Previous |  Up |  Next


optimization; minimal separation; dense packing
General circle packings are arrangements of circles on a given surface such that no two circles overlap except at tangent points. In this paper, we examine the optimal arrangement of circles centered on concentric annuli, in what we term rings. Our motivation for this is two-fold: first, certain industrial applications of circle packing naturally allow for filled rings of circles; second, any packing of circles within a circle admits a ring structure if one allows for irregular spacing of circles along each ring. As a result, the optimization problem discussed herein will be extended in a subsequent paper to a more general setting. With this framework in mind, we present properties of concentric rings that have common points of tangency, the exact solution for the optimal arrangement of filled rings along with its symmetry group, and applications to construction of aluminum-conductor steel reinforced cables.
[1] Cable, CME, Inc., Wire: AcuTech$^ TM$ ACSR, Aluminum Conductor, Steel Reinforced, Twisted Pair Conductors. (2019), Available at \brokenlink{{sec03-bac/bac-08-acsrtp.php}}
[2] Fodor, F.: The densest packing of 19 congruent circles in a circle. Geom. Dedicata 74 (1999), 139-145. DOI 10.1023/A:1005091317243 | MR 1674049 | Zbl 0927.52024
[3] Graham, R. L., Lubachevsky, B. D., Nurmela, K. J., ard, P. R. J. Österg\accent23: Dense packings of congruent circles in a circle. Discrete Math. 181 (1998), 139-154. DOI 10.1016/S0012-365X(97)00050-2 | MR 1600759 | Zbl 0901.52017
[4] Li, Y., Xu, S., Yang, H.: Design of circular signal constellations in the presence of phase noise. 4th International Conference on Wireless Communications, Networking and Mobile Computing IEEE, New York (2008), 2079-2086. DOI 10.1109/wicom.2008.498
[5] López, C. O., Beasley, J. E.: Packing a fixed number of identical circles in a circular container with circular prohibited areas. Optim. Lett. 13 (2019), 1449-1468. DOI 10.1007/s11590-018-1351-x | MR 4002309 | Zbl 07119195
[6] Luenberger, D. G., Ye, Y.: Linear and Nonlinear Programming. International Series in Operations Research & Management Science 228, Springer, Cham (2016). DOI 10.1007/978-3-319-18842-3 | MR 3363684 | Zbl 1319.90001
[7] Mobasseri, B. G.: Digital modulation classification using constellation shape. Signal Process. 80 (2000), 251-277. DOI 10.1016/S0165-1684(99)00127-9 | Zbl 0939.94025
[8] Pedroso, J. P., Cunha, S., Tavares, J. N.: Recursive circle packing problems. Int. Trans. Oper. Res. 23 (2016), 355-368. DOI 10.1111/itor.12107 | MR 3423777 | Zbl 1338.90351
[9] Stoyan, Y., Yaskov, G.: Packing equal circles into a circle with circular prohibited areas. Int. J. Comput. Math. 89 (2012), 1355-1369. DOI 10.1080/00207160.2012.685468 | MR 2946545 | Zbl 1255.52014
[10] F. R. Thrash, Jr.: Transmission Conductors---A review of the design and selection criteria. Available at \brokenlink{{Southwire-Transmission-Conductors.pdf}} (2019), 11 pages.
[11] Worzyk, T.: Submarine Power Cables. Design, Installation, Repair, Environmental Aspects. Springer, Berlin (2009). DOI 10.1007/978-3-642-01270-9
[12] Zoutendijk, G.: Methods of Feasible Directions. A Study in Linear and Non-Linear Programming. Elsevier, Amsterdam (1960). MR 0129119 | Zbl 0097.35408
Partner of
EuDML logo