Previous |  Up |  Next

Article

Title: A recovery-based a posteriori error estimator for the generalized Stokes problem (English)
Author: Huang, Pengzhan
Author: Zhang, Qiuyu
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 1
Year: 2020
Pages: 23-41
Summary lang: English
.
Category: math
.
Summary: A recovery-based a posteriori error estimator for the generalized Stokes problem is established based on the stabilized $P_1-P_0$ (linear/constant) finite element method. The reliability and efficiency of the error estimator are shown. Through theoretical analysis and numerical tests, it is revealed that the estimator is useful and efficient for the generalized Stokes problem. (English)
Keyword: generalized Stokes problem
Keyword: recovery-based error estimator
Keyword: adaptive method
Keyword: finite element method
MSC: 65N30
MSC: 65N50
idZBL: 07177870
idMR: MR4064588
DOI: 10.21136/AM.2020.0319-18
.
Date available: 2020-02-20T09:45:28Z
Last updated: 2022-03-07
Stable URL: http://hdl.handle.net/10338.dmlcz/147993
.
Reference: [1] Araya, R., Barrenechea, G. R., Poza, A.: An adaptive stabilized finite element method for the generalized Stokes problem.J. Comput. Appl. Math. 214 (2008), 457-479. Zbl 1132.76028, MR 2398346, 10.1016/j.cam.2007.03.011
Reference: [2] Babuška, I., Rheinboldt, W. C.: A-posteriori error estimates for the finite element method.Int. J. Numer. Methods Eng. 12 (1978), 1597-1615. Zbl 0396.65068, MR 0488846, 10.1002/nme.1620121010
Reference: [3] Bank, R. E., Welfert, B. D.: A comparison between the mini-element and the Petrov-Galerkin formulations for the generalized Stokes problem.Comput. Methods Appl. Mech. Eng. 83 (1990), 61-68. Zbl 0732.65100, MR 1078695, 10.1016/0045-7825(90)90124-5
Reference: [4] Barrenechea, G. R., Valentin, F.: An unusual stabilized finite element method for a generalized Stokes problem.Numer. Math. 92 (2002), 653-677. Zbl 1019.65087, MR 1935805, 10.1007/s002110100371
Reference: [5] Barrios, T. P., Bustinza, R., García, G. C., Hernández, E.: On stabilized mixed methods for generalized Stokes problem based on the velocity-pseudostress formulation: A priori error estimates.Comput. Methods Appl. Mech. Eng. 237-240 (2012), 78-87. Zbl 1253.76053, MR 2942835, 10.1016/j.cma.2012.05.006
Reference: [6] Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients.Numer. Math. 85 (2000), 579-608. Zbl 0962.65096, MR 1771781, 10.1007/s002110000135
Reference: [7] Bochev, P. B., Dohrmann, C. R., Gunzburger, M. D.: Stabilization of low-order mixed finite elements for the Stokes equations.SIAM J. Numer. Anal. 44 (2006), 82-101. Zbl 1145.76015, MR 2217373, 10.1137/S0036142905444482
Reference: [8] Burman, E., Hansbo, P.: Edge stabilization for the generalized Stokes problem: A continuous interior penalty method.Comput. Methods Appl. Mech. Eng. 195 (2006), 2393-2410. Zbl 1125.76038, MR 2207476, 10.1016/j.cma.2005.05.009
Reference: [9] Bustinza, R., Gatica, G. N., González, M.: A mixed finite element method for the generalized Stokes problem.Int. J. Numer. Methods Fluids 49 (2005), 877-903. Zbl 1077.76038, MR 2173758, 10.1002/fld.1029
Reference: [10] Carstensen, C.: Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis.ZAMM, Z. Angew. Math. Mech. 84 (2004), 3-21. Zbl 1073.65120, MR 2031241, 10.1002/zamm.200410101
Reference: [11] Carstensen, C., Funken, S. A.: A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems.Math. Comput. 70 (2001), 1353-1381. Zbl 1014.76042, MR 1836908, 10.1090/S0025-5718-00-01264-3
Reference: [12] Carstensen, C., Verfürth, R.: Edge residuals dominate a posteriori error estimates for low order finite element methods.SIAM J. Numer. Anal. 36 (1999), 1571-1587. Zbl 0938.65124, MR 1706735, 10.1137/S003614299732334X
Reference: [13] Chou, S. H.: Analysis and convergence of a covolume method for the generalized Stokes problem.Math. Comput. 66 (1997), 85-104. Zbl 0854.65091, MR 1372003, 10.1090/S0025-5718-97-00792-8
Reference: [14] Deng, Q., Feng, X.: Multigrid methods for the generalized Stokes equations based on mixed finite element methods.J. Comput. Math. 20 (2002), 129-152. Zbl 0998.65123, MR 1884415
Reference: [15] Duan, H.-Y., Hsieh, P.-W., Tan, R. C. E., Yang, S.-Y.: Analysis of the small viscosity and large reaction coefficient in the computation of the generalized Stokes problem by a novel stabilized finite element method.Comput. Methods Appl. Mech. Eng. 271 (2014), 23-47. Zbl 1296.76081, MR 3162662, 10.1016/j.cma.2013.11.024
Reference: [16] Duarte, C. A., Oden, J. T.: An $h$-$p$ adaptive method using clouds.Comput. Methods Appl. Mech. Eng. 139 (1996), 237-262. Zbl 0918.73328, MR 1426011, 10.1016/S0045-7825(96)01085-7
Reference: [17] He, Y., Xie, C., Zheng, H.: A posteriori error estimate for stabilized low-order mixed FEM for the Stokes equations.Adv. Appl. Math. Mech. 2 (2010), 798-809. Zbl 1262.65158, MR 2719057, 10.4208/aamm.09-m0995
Reference: [18] Huang, P., Zhang, Q.: A posteriori error estimates for the Stokes eigenvalue problem based on a recovery type estimator.Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 62 (2019), 295-304. MR 4022421
Reference: [19] Kay, D., Silvester, D.: A posteriori error estimation for stabilized mixed approximations of the Stokes equations.SIAM J. Sci. Comput. 21 (1999), 1321-1336. Zbl 0956.65100, MR 1740398, 10.1137/S1064827598333715
Reference: [20] Larin, M., Reusken, A.: A comparative study of efficient iterative solvers for generalized Stokes equations.Numer. Linear Algebra Appl. 15 (2008), 13-34. Zbl 1212.65493, MR 2388412, 10.1002/nla.561
Reference: [21] Nafa, K., Wathen, A. J.: Local projection stabilized Galerkin approximations for the generalized Stokes problem.Comput. Methods Appl. Mech. Eng. 198 (2009), 877-883. Zbl 1229.76054, MR 2498529, 10.1016/j.cma.2008.10.017
Reference: [22] Repin, S., Stenberg, R.: A posteriori error estimates for the generalized Stokes problem.J. Math. Sci., New York 142 (2007), 1828-1843 translation from Probl. Mat. Anal. 34 2006 89-101. Zbl 1202.65150, MR 2331642, 10.1007/s10958-007-0092-7
Reference: [23] Rodríguez, R.: Some remarks on Zienkiewicz-Zhu estimator.Numer. Methods Partial Differ. Equations 10 (1994), 625-635. Zbl 0806.73069, MR 1290948, 10.1002/num.1690100509
Reference: [24] Song, L., Hou, Y., Cai, Z.: Recovery-based error estimator for stabilized finite element methods for the Stokes equation.Comput. Methods Appl. Mech. Eng. 272 (2014), 1-16. Zbl 1296.76087, MR 3171270, 10.1016/j.cma.2014.01.004
Reference: [25] Verfürth, R.: A posteriori error estimators for the Stokes equations.Numer. Math. 55 (1989), 309-325. Zbl 0674.65092, MR 0993474, 10.1007/BF01390056
Reference: [26] Verfürth, R.: A posteriori error estimates for nonlinear problems: Finite element discretizations of elliptic equations.Math. Comput. 62 (1994), 445-475. Zbl 0799.65112, MR 1213837, 10.2307/2153518
Reference: [27] Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques.Wiley-Teubner Series Advances in Numerical Mathematics, Wiley, Chichester; Teubner, Stuttgart (1996). Zbl 0853.65108
Reference: [28] Wang, Z., Chen, Z., Li, J.: A stabilized nonconforming quadrilateral finite element method for the generalized Stokes equations.Int. J. Numer. Anal. Model. 9 (2012), 449-457. Zbl 1277.76020, MR 2926523
Reference: [29] Wang, J., Wang, Y., Ye, X.: A posteriori error estimate for stabilized finite element methods for the Stokes equations.Int. J. Numer. Anal. Model. 9 (2012), 1-16. Zbl 06165588, MR 2871298
Reference: [30] Zheng, H., Hou, Y., Shi, F.: A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow.SIAM J. Sci. Comput. 32 (2010), 1346-1360. Zbl 1410.76206, MR 2652081, 10.1137/090771508
Reference: [31] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates. I: The recovery technique.Int. J. Numer. Methods Eng. 33 (1992), 1331-1364. Zbl 0769.73084, MR 1161557, 10.1002/nme.1620330702
Reference: [32] Zienkiewicz, O. C., Zhu, J. Z.: Superconvergence and the superconvergent patch recovery.Finite Elem. Anal. Des. 19 (1995), 11-23. Zbl 0875.73292, 10.1016/0168-874X(94)00054-J
.

Files

Files Size Format View
AplMat_65-2020-1_2.pdf 427.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo