Previous |  Up |  Next

Article

Title: A continuity result for a quasilinear elliptic free boundary problem (English)
Author: Lyaghfouri, Abdeslem
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 1
Year: 2020
Pages: 67-87
Summary lang: English
.
Category: math
.
Summary: We investigate a two dimensional quasilinear free boundary problem, and show that the free boundary is a union of graphs of continuous functions. (English)
Keyword: quasilinear elliptic free boundary
Keyword: continuity
MSC: 35J62
MSC: 35R35
idZBL: 07177872
idMR: MR4064590
DOI: 10.21136/AM.2020.0190-19
.
Date available: 2020-02-20T09:46:31Z
Last updated: 2022-03-07
Stable URL: http://hdl.handle.net/10338.dmlcz/147995
.
Reference: [1] Alvarez, S. J., Carrillo, J.: A free boundary problem in theory of lubrication.Commun. Partial Differ. Equations 19 (1994), 1743-1761. Zbl 0809.35166, MR 1301172, 10.1080/03605309408821072
Reference: [2] Carrillo, J., Lyaghfouri, A.: The dam problem for nonlinear Darcy's laws and Dirichlet boundary conditions.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 26 (1998), 453-505. Zbl 0928.76111, MR 1635777
Reference: [3] Challal, S., Lyaghfouri, A.: A filtration problem through a heterogeneous porous medium.Interfaces Free Bound. 6 (2004), 55-79. Zbl 1075.35115, MR 2047073, 10.4171/IFB/91
Reference: [4] Challal, S., Lyaghfouri, A.: On the continuity of the free boundary in problems of type $ div(a(x) \nabla u) = -(h(x)\chi(u))_{x_1}$.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 62 (2005), 283-300. Zbl 1070.35136, MR 2145607, 10.1016/j.na.2005.02.115
Reference: [5] Challal, S., Lyaghfouri, A.: On a class of free boundary problems of type $ div(a(X)\nabla u) =- div(\chi(u)H(x))$.Differ. Integral Equ. 19 (2006), 481-516. Zbl 1212.35508, MR 2235138
Reference: [6] Challal, S., Lyaghfouri, A.: On the dam problem with two fluids governed by a nonlinear Darcy's law.Adv. Differ. Equ. 11 (2006), 841-892. Zbl 1167.35550, MR 2261733
Reference: [7] Challal, S., Lyaghfouri, A.: On the continuity of the free boundary in the problem $\Delta_p u = -(h(x,y)\chi(u))_x$.Appl. Anal. 86 (2007), 1177-1184. Zbl 1136.35105, MR 2351639, 10.1080/00036810701620601
Reference: [8] Challal, S., Lyaghfouri, A.: Hölder continuity of solutions to the $A$-Laplace equation involving measures.Commun. Pure Appl. Anal. 8 (2009), 1577-1583. Zbl 1179.35336, MR 2505287, 10.3934/cpaa.2009.8.1577
Reference: [9] Challal, S., Lyaghfouri, A.: Lipschitz continuity of solutions of a free boundary problem involving the $p$-Laplacian.J. Math. Anal. Appl. 355 (2009), 700-707. Zbl 1167.35551, MR 2521745, 10.1016/j.jmaa.2009.02.012
Reference: [10] Challal, S., Lyaghfouri, A.: The heterogeneous dam problem with leaky boundary condition.Commun. Pure Appl. Anal. 10 (2011), 93-125. Zbl 1300.76028, MR 2746529, 10.3934/cpaa.2011.10.93
Reference: [11] Challal, S., Lyaghfouri, A.: Continuity of the free boundary in a problem involving the $A$-Laplacian.Available at https://arxiv.org/abs/1906.11791 (2019), 18 pages. MR 2521745
Reference: [12] Challal, S., Lyaghfouri, A.: Lipschitz continuity of solutions to a free boundary problem involving the $A$-Laplacian.Available at https://arxiv.org/abs/1906.06511 (2019), 14 pages. MR 2521745
Reference: [13] Challal, S., Lyaghfouri, A., Rodrigues, J. F.: On the $A$-obstacle problem and the Hausdorff measure of its free boundary.Ann. Mat. Pura Appl. (4) 191 (2012), 113-165. Zbl 1235.35285, MR 2886164, 10.1007/s10231-010-0177-7
Reference: [14] Chipot, M.: On the continuity of the free boundary in some class of two-dimensional problems.Interfaces Free Bound. 3 (2001), 81-99. Zbl 0973.35201, MR 1805079, 10.4171/IFB/33
Reference: [15] Chipot, M., Lyaghfouri, A.: The dam problem for non-linear Darcy’s laws and non-linear leaky boundary conditions.Math. Methods Appl. Sci. 20 (1997), 1045-1068. Zbl 0889.35125, MR 1460692, 10.1002/(SICI)1099-1476(199708)20:12<1045::AID-MMA900>3.0.CO;2-3
Reference: [16] Chipot, M., Lyaghfouri, A.: The dam problem for linear Darcy's law and nonlinear leaky boundary conditions.Adv. Differ. Equ. 3 (1998), 1-50. Zbl 0947.35177, MR 1608073
Reference: [17] Lieberman, G. M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations.Commun. Partial Differ. Equations 16 (1991), 311-361. Zbl 0742.35028, MR 1104103, 10.1080/03605309108820761
Reference: [18] Lyaghfouri, A.: A free boundary problem for a fluid flow in a heterogeneous porous medium.Ann. Univ. Ferrara, Nuova Ser., Sez. VII (2003), 209-262. Zbl 1232.35196, MR 2164998, 10.1007/BF02844918
Reference: [19] Lyaghfouri, A.: The dam problem.Handbook of Differential Equations: Stationary Partial Differential Equations M. Chipot Handbook of Differential Equations 3, Elsevier, Amsterdam (2006), 465-552. Zbl 1193.35257, MR 2569337, 10.1016/S1874-5733(06)80010-0
Reference: [20] Lyaghfouri, A.: On the Lipschitz continuity of the solutions of a class of elliptic free boundary problems.J. Appl. Anal. 14 (2008), 165-181. Zbl 1175.35029, MR 2501665, 10.1515/JAA.2008.165
.

Files

Files Size Format View
AplMat_65-2020-1_4.pdf 370.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo