Previous |  Up |  Next

Article

Title: Global strong solutions of a 2-D new magnetohydrodynamic system (English)
Author: Liu, Ruikuan
Author: Yang, Jiayan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 1
Year: 2020
Pages: 105-120
Summary lang: English
.
Category: math
.
Summary: The main objective of this paper is to study the global strong solution of the parabolic-hyperbolic incompressible magnetohydrodynamic model in the two dimensional space. Based on Agmon, Douglis, and Nirenberg's estimates for the stationary Stokes equation and Solonnikov's theorem on $L^p$-$L^q$-estimates for the evolution Stokes equation, it is shown that this coupled magnetohydrodynamic equations possesses a global strong solution. In addition, the uniqueness of the global strong solution is obtained. (English)
Keyword: global strong solution
Keyword: magnetohydrodynamics
Keyword: Stokes equation
Keyword: $L^p$-$L^q$-estimates
MSC: 35B65
MSC: 35D35
MSC: 35Q35
MSC: 35Q61
MSC: 76W05
idZBL: 07177874
idMR: MR4064592
DOI: 10.21136/AM.2020.0208-19
.
Date available: 2020-02-20T09:47:40Z
Last updated: 2022-03-07
Stable URL: http://hdl.handle.net/10338.dmlcz/147997
.
Reference: [1] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II.Commun. Pure Appl. Math. 17 (1964), 35-92. Zbl 0123.28706, MR 0162050, 10.1002/cpa.3160170104
Reference: [2] Amrouche, C., Girault, V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension.Czech. Math. J. 44 (1994), 109-140. Zbl 0823.35140, MR 1257940, 10.21136/CMJ.1994.128452
Reference: [3] Cao, C., Wu, J.: Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion.Adv. Math. 226 (2011), 1803-1822. Zbl 1213.35159, MR 2737801, 10.1016/j.aim.2010.08.017
Reference: [4] Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability.International Series of Monographs on Physics, Clarendon Press, Oxford (1961). Zbl 0142.44103, MR 0128226
Reference: [5] Duvaut, G., Lions, J. L.: Inéquations en thermoélasticité et magnétohydrodynamique.Arch. Ration. Mech. Anal. 46 (1972), 241-279 French. Zbl 0264.73027, MR 0346289, 10.1007/BF00250512
Reference: [6] Geissert, M., Hess, M., Hieber, M., Schwarz, C., Stavrakidis, K.: Maximal $L^p$-$L^q$-estimates for the Stokes equation: a short proof of Solonnikov's theorem.J. Math. Fluid Mech. 12 (2010), 47-60. Zbl 1261.35120, MR 2602914, 10.1007/s00021-008-0275-0
Reference: [7] He, C., Xin, Z.: On the regularity of weak solutions to the magnetohydrodynamic equations.J. Differ. Equations 213 (2005), 235-254. Zbl 1072.35154, MR 2142366, 10.1016/j.jde.2004.07.002
Reference: [8] Huang, X., Wang, Y.: Global strong solution to the 2D nonhomogeneous incompressible MHD system.J. Differ. Equations 254 (2013), 511-527. Zbl 1253.35121, MR 2990041, 10.1016/j.jde.2012.08.029
Reference: [9] Jiu, Q., Niu, D., Wu, J., Xu, X., Yu, H.: The 2D magnetohydrodynamic equations with magnetic diffusion.Nonlinearity 28 (2015), 3935-3955. Zbl 1328.76076, MR 3424899, 10.1088/0951-7715/28/11/3935
Reference: [10] Liu, R., Wang, Q.: $S^1$ attractor bifurcation analysis for an electrically conducting fluid flow between two rotating cylinders.Physica D 392 (2019), 17-33. MR 3928313, 10.1016/j.physd.2019.03.001
Reference: [11] Liu, R., Yang, J.: Magneto-hydrodynamical model for plasma.Z. Angew. Math. Phys. 68 (2017), Article number 114, 15 pages. Zbl 1386.76191, MR 3704274, 10.1007/s00033-017-0861-1
Reference: [12] Ma, T.: Theory and Method of Partial Differential Equation.Science Press, Beijing (2011), Chinese.
Reference: [13] Ma, T., Wang, S.: Phase Transition Dynamics.Springer, New York (2014). Zbl 1285.82004, MR 3154868, 10.1007/978-1-4614-8963-4
Reference: [14] Masmoudi, N.: Global well posedness for the Maxwell-Navier-Stokes system in 2D.J. Math. Pures Appl. (9) 93 (2010), 559-571. Zbl 1192.35133, MR 2651981, 10.1016/j.matpur.2009.08.007
Reference: [15] Regmi, D.: Global weak solutions for the two-dimensional magnetohydrodynamic equations with partial dissipation and diffusion.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 144 (2016), 157-164. Zbl 1348.35196, MR 3534099, 10.1016/j.na.2016.07.002
Reference: [16] Ren, X., Wu, J., Xiang, Z., Zhang, Z.: Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion.J. Funct. Anal. 267 (2014), 503-541. Zbl 1295.35104, MR 3210038, 10.1016/j.jfa.2014.04.020
Reference: [17] Sengul, T., Wang, S.: Pattern formation and dynamic transition for magnetohydrodynamic convection.Commun. Pure Appl. Anal. 13 (2014), 2609-2639. Zbl 1305.76130, MR 3248406, 10.3934/cpaa.2014.13.2609
Reference: [18] Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations.Commun. Pure Appl. Math. 36 (1983), 635-664. Zbl 0524.76099, MR 0716200, 10.1002/cpa.3160360506
Reference: [19] Solonnikov, V. A.: Estimates for solutions of nonstationary Navier-Stokes equations.J. Sov. Math. 8 (1977), 467-529. Zbl 0404.35081, 10.1007/BF01084616
Reference: [20] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis.American Mathematical Society, Providence (2001). Zbl 0981.35001, MR 1846644, 10.1090/chel/343
Reference: [21] Vialov, V.: On the regularity of weak solutions to the MHD system near the boundary.J. Math. Fluid Mech. 16 (2014), 745-769. Zbl 1308.35228, MR 3267547, 10.1007/s00021-014-0184-3
Reference: [22] Wang, Q.: Stability and bifurcation of a viscous incompressible plasma fluid contained between two concentric rotating cylinders.Discrete Contin. Dyn. Syst., Ser. B. 19 (2014), 543-563. Zbl 1292.76078, MR 3170198, 10.3934/dcdsb.2014.19.543
Reference: [23] Wang, T.: A regularity criterion of strong solutions to the 2D compressible magnetohydrodynamic equations.Nonlinear Anal., Real World Appl. 31 (2016), 100-118. Zbl 1338.35088, MR 3490834, 10.1016/j.nonrwa.2016.01.011
Reference: [24] Wu, J.: Generalized MHD equations.J. Differ. Equations 195 (2003), 284-312. Zbl 1057.35040, MR 2016814, 10.1016/j.jde.2003.07.007
Reference: [25] Yamazaki, K.: Global regularity of $N$-dimensional generalized MHD system with anisotropic dissipation and diffusion.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 122 (2015), 176-191. Zbl 1319.35201, MR 3348070, 10.1016/j.na.2015.04.006
Reference: [26] Zhong, X.: Global strong solutions for 3D viscous incompressible heat conducting magnetohydrodynamic flows with non-negative density.J. Math. Anal. Appl. 446 (2017), 707-729. Zbl 1352.35133, MR 3554752, 10.1016/j.jmaa.2016.09.012
.

Files

Files Size Format View
AplMat_65-2020-1_6.pdf 312.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo