Title:
|
On the geometrical properties of Heisenberg groups (English) |
Author:
|
Nasehi, Mehri |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
56 |
Issue:
|
1 |
Year:
|
2020 |
Pages:
|
11-19 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In [20] the existence of major differences about totally geodesic two-dimensional foliations between Riemannian and Lorentzian geometry of the Heisenberg group $H_{3}$ is proved. Our aim in this paper is to obtain a comparison on some other geometrical properties of these spaces. Interesting behaviours are found. Also the non-existence of left-invariant Ricci and Yamabe solitons and the existence of algebraic Ricci soliton in both Riemannian and Lorentzian cases are proved. Moreover, all of the descriptions of their homogeneous Riemannian and Lorentzian structures and their types are obtained. Besides, all the left-invariant generalized Ricci solitons and unit time-like vector fields which are spatially harmonic are completely determined. (English) |
Keyword:
|
left-invariant generalized Ricci solitons |
Keyword:
|
harmonicity of invariant vector fields |
Keyword:
|
homogeneous structures |
MSC:
|
53C30 |
MSC:
|
53C50 |
idZBL:
|
Zbl 07177876 |
idMR:
|
MR4075884 |
DOI:
|
10.5817/AM2020-1-11 |
. |
Date available:
|
2020-03-02T09:03:54Z |
Last updated:
|
2020-08-26 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148032 |
. |
Reference:
|
[1] Batat, W., Onda, K.: Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups.J. Geom. Phys. 114 (2017), 138–152. MR 3610038, 10.1016/j.geomphys.2016.11.018 |
Reference:
|
[2] Batat, W., Rahmani, S.: Homogeneous Lorentzian structures on the generalized Heisenberg group.Differ. Geom. Dyn. Syst. 12 (2010), 12–17. MR 2606543 |
Reference:
|
[3] Brozos-Vazquez, M., Calvaruso, G., Garcia-Rio, E., Gavino-Fernandez, S.: Three-dimensional Lorentzian homogeneous Ricci solitons.Israel J. Math. 188 (2012), 385–403. MR 2897737, 10.1007/s11856-011-0124-3 |
Reference:
|
[4] Calvaruso, G.: Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds.Geom. Dedicata 127 (2007), 99–119. MR 2338519, 10.1007/s10711-007-9163-7 |
Reference:
|
[5] Calvaruso, G.: Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups.J. Geom. Phys. 61 (2011), 498–515. MR 2746133, 10.1016/j.geomphys.2010.11.001 |
Reference:
|
[6] Calvaruso, G.: Harmonicity of vector fields on four-dimensional generalized symmetric spaces.Cent. Eur. J. Math. 10 (2) (2012), 411–425. MR 2886549, 10.2478/s11533-011-0109-9 |
Reference:
|
[7] Calvaruso, G.: Three-dimensional homogeneous generalized Ricci solitons.Mediterr. J. Math. 14 (2017), 1–21. MR 3707300, 10.1007/s00009-017-1019-2 |
Reference:
|
[8] Calvaruso, G., Zaeim, A.: A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces.J. Geom. Phys. 80 (2014), 15–25. MR 3188790, 10.1016/j.geomphys.2014.02.007 |
Reference:
|
[9] Fastenakels, J., Munteanu, M.I., Van Der Veken, J.: Constant angle surfaces in the Heisenberg group.J. Acta Math. 27 (4) (2011), 747–756. MR 2776411 |
Reference:
|
[10] Gadea, P.M., Oubina, J.A.: Reductive homogeneous pseudo-Riemannian manifolds.Monatsh. Math. 124 (1997), 17–34. MR 1457209, 10.1007/BF01320735 |
Reference:
|
[11] Gadea, P.M., Oubina, J.A.: Homogeneous Lorentzian structures on the oscillator groups.Arch. Math. (Basel) 73 (1999), 311–320. MR 1710084, 10.1007/s000130050403 |
Reference:
|
[12] Gil-Medrano, O., Hurtado, A.: Spacelike energy of timelike unit vector fields on a Lorentzian manifold.J. Geom. Phys. 51 (2004), 82–100. MR 2078686, 10.1016/j.geomphys.2003.09.008 |
Reference:
|
[13] Gray, A.: Einstein-like manifolds which are not Einstein.Geom. Dedicata 7 (1978), 259–280. Zbl 0378.53018, MR 0505561, 10.1007/BF00151525 |
Reference:
|
[14] Nasehi, M., Aghasi, M.: On the geometrical properties of hypercomplex four-dimensional Lorentzian Lie groups.to appear in Georgian Math. J. MR 4069964 |
Reference:
|
[15] Nasehi, M., Aghasi, M.: On the geometry of para-hypercomplex 4-dimensional Lie groups.J. Geom. Phys. 132 (2018), 230–238. MR 3836779, 10.1016/j.geomphys.2018.06.008 |
Reference:
|
[16] Nasehi, M., Aghasi, M.: On the geometry of some solvable extensions of the Heisenberg group.Czechoslovak Math. J. 68 (3) (2018), 723–740. MR 3851887, 10.21136/CMJ.2018.0635-16 |
Reference:
|
[17] Nurowski, P., Randall, M.: Generalized Ricci solitons.J. Geom. Anal. 26 (2) (2016), 1280–1345. MR 3472837, 10.1007/s12220-015-9592-8 |
Reference:
|
[18] Rahmani, N., Rahmani, S.: Structures homogenes lorentziennes sur le groupe de Heisenberg group I.J. Geom. Phys. 13 (1994), 254–258. MR 1269242, 10.1016/0393-0440(94)90033-7 |
Reference:
|
[19] Rahmani, N., Rahmani, S.: Lorentzian geometry of the Heisenberg group.Geom. Dedicata 118 (2006), 133–140. MR 2239452, 10.1007/s10711-005-9030-3 |
Reference:
|
[20] Rahmani, S.: Metriques de Lorentz sur les groupes de Lie unimodulaires, de dimension trois.J. Geom. Phys. 9 (3) (1992), 295–302, (French). MR 1171140, 10.1016/0393-0440(92)90033-W |
Reference:
|
[21] Tricerri, F., Vanhecke, L.: Homogeneous structures on Riemannian manifolds.Cambridge University Press, 1983. MR 0712664 |
. |