Previous |  Up |  Next

Article

Title: On the geometrical properties of Heisenberg groups (English)
Author: Nasehi, Mehri
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 1
Year: 2020
Pages: 11-19
Summary lang: English
.
Category: math
.
Summary: In [20] the existence of major differences about totally geodesic two-dimensional foliations between Riemannian and Lorentzian geometry of the Heisenberg group $H_{3}$ is proved. Our aim in this paper is to obtain a comparison on some other geometrical properties of these spaces. Interesting behaviours are found. Also the non-existence of left-invariant Ricci and Yamabe solitons and the existence of algebraic Ricci soliton in both Riemannian and Lorentzian cases are proved. Moreover, all of the descriptions of their homogeneous Riemannian and Lorentzian structures and their types are obtained. Besides, all the left-invariant generalized Ricci solitons and unit time-like vector fields which are spatially harmonic are completely determined. (English)
Keyword: left-invariant generalized Ricci solitons
Keyword: harmonicity of invariant vector fields
Keyword: homogeneous structures
MSC: 53C30
MSC: 53C50
idZBL: Zbl 07177876
idMR: MR4075884
DOI: 10.5817/AM2020-1-11
.
Date available: 2020-03-02T09:03:54Z
Last updated: 2020-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/148032
.
Reference: [1] Batat, W., Onda, K.: Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups.J. Geom. Phys. 114 (2017), 138–152. MR 3610038, 10.1016/j.geomphys.2016.11.018
Reference: [2] Batat, W., Rahmani, S.: Homogeneous Lorentzian structures on the generalized Heisenberg group.Differ. Geom. Dyn. Syst. 12 (2010), 12–17. MR 2606543
Reference: [3] Brozos-Vazquez, M., Calvaruso, G., Garcia-Rio, E., Gavino-Fernandez, S.: Three-dimensional Lorentzian homogeneous Ricci solitons.Israel J. Math. 188 (2012), 385–403. MR 2897737, 10.1007/s11856-011-0124-3
Reference: [4] Calvaruso, G.: Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds.Geom. Dedicata 127 (2007), 99–119. MR 2338519, 10.1007/s10711-007-9163-7
Reference: [5] Calvaruso, G.: Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups.J. Geom. Phys. 61 (2011), 498–515. MR 2746133, 10.1016/j.geomphys.2010.11.001
Reference: [6] Calvaruso, G.: Harmonicity of vector fields on four-dimensional generalized symmetric spaces.Cent. Eur. J. Math. 10 (2) (2012), 411–425. MR 2886549, 10.2478/s11533-011-0109-9
Reference: [7] Calvaruso, G.: Three-dimensional homogeneous generalized Ricci solitons.Mediterr. J. Math. 14 (2017), 1–21. MR 3707300, 10.1007/s00009-017-1019-2
Reference: [8] Calvaruso, G., Zaeim, A.: A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces.J. Geom. Phys. 80 (2014), 15–25. MR 3188790, 10.1016/j.geomphys.2014.02.007
Reference: [9] Fastenakels, J., Munteanu, M.I., Van Der Veken, J.: Constant angle surfaces in the Heisenberg group.J. Acta Math. 27 (4) (2011), 747–756. MR 2776411
Reference: [10] Gadea, P.M., Oubina, J.A.: Reductive homogeneous pseudo-Riemannian manifolds.Monatsh. Math. 124 (1997), 17–34. MR 1457209, 10.1007/BF01320735
Reference: [11] Gadea, P.M., Oubina, J.A.: Homogeneous Lorentzian structures on the oscillator groups.Arch. Math. (Basel) 73 (1999), 311–320. MR 1710084, 10.1007/s000130050403
Reference: [12] Gil-Medrano, O., Hurtado, A.: Spacelike energy of timelike unit vector fields on a Lorentzian manifold.J. Geom. Phys. 51 (2004), 82–100. MR 2078686, 10.1016/j.geomphys.2003.09.008
Reference: [13] Gray, A.: Einstein-like manifolds which are not Einstein.Geom. Dedicata 7 (1978), 259–280. Zbl 0378.53018, MR 0505561, 10.1007/BF00151525
Reference: [14] Nasehi, M., Aghasi, M.: On the geometrical properties of hypercomplex four-dimensional Lorentzian Lie groups.to appear in Georgian Math. J. MR 4069964
Reference: [15] Nasehi, M., Aghasi, M.: On the geometry of para-hypercomplex 4-dimensional Lie groups.J. Geom. Phys. 132 (2018), 230–238. MR 3836779, 10.1016/j.geomphys.2018.06.008
Reference: [16] Nasehi, M., Aghasi, M.: On the geometry of some solvable extensions of the Heisenberg group.Czechoslovak Math. J. 68 (3) (2018), 723–740. MR 3851887, 10.21136/CMJ.2018.0635-16
Reference: [17] Nurowski, P., Randall, M.: Generalized Ricci solitons.J. Geom. Anal. 26 (2) (2016), 1280–1345. MR 3472837, 10.1007/s12220-015-9592-8
Reference: [18] Rahmani, N., Rahmani, S.: Structures homogenes lorentziennes sur le groupe de Heisenberg group I.J. Geom. Phys. 13 (1994), 254–258. MR 1269242, 10.1016/0393-0440(94)90033-7
Reference: [19] Rahmani, N., Rahmani, S.: Lorentzian geometry of the Heisenberg group.Geom. Dedicata 118 (2006), 133–140. MR 2239452, 10.1007/s10711-005-9030-3
Reference: [20] Rahmani, S.: Metriques de Lorentz sur les groupes de Lie unimodulaires, de dimension trois.J. Geom. Phys. 9 (3) (1992), 295–302, (French). MR 1171140, 10.1016/0393-0440(92)90033-W
Reference: [21] Tricerri, F., Vanhecke, L.: Homogeneous structures on Riemannian manifolds.Cambridge University Press, 1983. MR 0712664
.

Files

Files Size Format View
ArchMathRetro_056-2020-1_2.pdf 512.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo