Previous |  Up |  Next

Article

Title: A note on certain Tannakian group schemes (English)
Author: Amrutiya, Sanjay
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 1
Year: 2020
Pages: 21-29
Summary lang: English
.
Category: math
.
Summary: In this note, we prove that the $F$-fundamental group scheme is a birational invariant for smooth projective varieties. We prove that the $F$-fundamental group scheme is naturally a quotient of the Nori fundamental group scheme. For elliptic curves, it turns out that the $F$-fundamental group scheme and the Nori fundamental group scheme coincide. We also consider an extension of the Nori fundamental group scheme in positive characteristic using semi-essentially finite vector bundles, and prove that in this way, we do not get a non-trivial extension of the Nori fundamental group scheme for elliptic curves, unlike in characteristic zero. (English)
Keyword: F-fundamental group scheme
Keyword: Frobenius-finite Vector bundles
MSC: 14F05
MSC: 14L15
idZBL: Zbl 07177877
idMR: MR4075885
DOI: 10.5817/AM2020-1-21
.
Date available: 2020-03-02T09:05:10Z
Last updated: 2020-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/148033
.
Reference: [1] Amrutiya, S., Biswas, I.: On the $F$-fundamental group scheme.Bull. Sci. Math. 34 (2010), 461–474. MR 2665455, 10.1016/j.bulsci.2009.12.002
Reference: [2] Atiyah, M.F.: Vector bundles over an elliptic curve.Proc. London Math. Soc. 3 (1957), 414–452. MR 0131423
Reference: [3] Biswas, I., Ducrohet, L.: An analog of a theorem of Lange and Stuhler for principal bundles.C. R. Acad. Sci. Paris, Ser. I 345 (2007), 495–497. MR 2375109, 10.1016/j.crma.2007.10.010
Reference: [4] Biswas, I., Holla, Y.: Comparison of fundamental group schemes of a projective variety and an ample hypersurface.J. Algebraic Geom. 16 (2007), 547–597. MR 2306280, 10.1090/S1056-3911-07-00449-3
Reference: [5] Biswas, I., Parameswaran, A.J., Subramanian, S.: Monodromy group for a strongly semistable principal bundle over a curve.Duke Math. J. 132 (2006), 1–48. MR 2219253
Reference: [6] Deligne, P., Milne, J.S.: Tannakian Categories.Hodge cycles, motives and Shimura varieties, Lecture Notes in Math, vol. 900, Springer–Verlag, Berlin–Heidelberg–New York, 1982. MR 0654325, 10.1007/978-3-540-38955-2
Reference: [7] Hogadi, A., Mehta, V.B.: Birational invariance of the S-fundamental group scheme.Pure Appl. Math. Q. 7 (4) (2011), 1361–1369, Special Issue: In memory of Eckart Viehweg. MR 2918164, 10.4310/PAMQ.2011.v7.n4.a12
Reference: [8] Ishimura, S.: A descent problem of vector bundles and its applications.J. Math. Kyoto Univ. 23 (1983), 73–83. MR 0692730, 10.1215/kjm/1250521611
Reference: [9] Lange, H., Stuhler, U.: Vektorbündel auf Kurven und Darstellungen der algebraischen Fudamentalgruppe.Math. Z. 156 (1977), 73–83. MR 0472827, 10.1007/BF01215129
Reference: [10] Langer, A.: Semistable sheaves in positive characteristic.Ann. of Math. 159 (2004), 251–276. MR 2051393, 10.4007/annals.2004.159.251
Reference: [11] Langer, A.: On S-fundamental group scheme.Ann. Inst. Fourier (Grenoble) 61 (5) (2011), 2077–2119. MR 2961849, 10.5802/aif.2667
Reference: [12] Lekaus, S.: Vector bundles of degree zero over an elliptic curve.C. R. Math. Acad. Sci. Paris 335 (2002), 351–354. MR 1931515, 10.1016/S1631-073X(02)02478-0
Reference: [13] Nori, M.V.: The fundamental group-scheme.Proc. Indian Acad. Sci. Math. Sci. 91 (2) (1982), 73–122. MR 0682517, 10.1007/BF02967978
Reference: [14] Oda, T.: Vector bundles on an elliptic curve.Nagoya Math. J. 43 (1971), 41–72. MR 0318151, 10.1017/S0027763000014367
Reference: [15] Otabe, S.: An extension of Nori fundamental group.Comm. Algebra 45 (2017), 3422–3448. MR 3609350, 10.1080/00927872.2016.1236936
.

Files

Files Size Format View
ArchMathRetro_056-2020-1_3.pdf 507.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo