Title:
|
A note on certain Tannakian group schemes (English) |
Author:
|
Amrutiya, Sanjay |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
56 |
Issue:
|
1 |
Year:
|
2020 |
Pages:
|
21-29 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this note, we prove that the $F$-fundamental group scheme is a birational invariant for smooth projective varieties. We prove that the $F$-fundamental group scheme is naturally a quotient of the Nori fundamental group scheme. For elliptic curves, it turns out that the $F$-fundamental group scheme and the Nori fundamental group scheme coincide. We also consider an extension of the Nori fundamental group scheme in positive characteristic using semi-essentially finite vector bundles, and prove that in this way, we do not get a non-trivial extension of the Nori fundamental group scheme for elliptic curves, unlike in characteristic zero. (English) |
Keyword:
|
F-fundamental group scheme |
Keyword:
|
Frobenius-finite Vector bundles |
MSC:
|
14F05 |
MSC:
|
14L15 |
idZBL:
|
Zbl 07177877 |
idMR:
|
MR4075885 |
DOI:
|
10.5817/AM2020-1-21 |
. |
Date available:
|
2020-03-02T09:05:10Z |
Last updated:
|
2020-08-26 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148033 |
. |
Reference:
|
[1] Amrutiya, S., Biswas, I.: On the $F$-fundamental group scheme.Bull. Sci. Math. 34 (2010), 461–474. MR 2665455, 10.1016/j.bulsci.2009.12.002 |
Reference:
|
[2] Atiyah, M.F.: Vector bundles over an elliptic curve.Proc. London Math. Soc. 3 (1957), 414–452. MR 0131423 |
Reference:
|
[3] Biswas, I., Ducrohet, L.: An analog of a theorem of Lange and Stuhler for principal bundles.C. R. Acad. Sci. Paris, Ser. I 345 (2007), 495–497. MR 2375109, 10.1016/j.crma.2007.10.010 |
Reference:
|
[4] Biswas, I., Holla, Y.: Comparison of fundamental group schemes of a projective variety and an ample hypersurface.J. Algebraic Geom. 16 (2007), 547–597. MR 2306280, 10.1090/S1056-3911-07-00449-3 |
Reference:
|
[5] Biswas, I., Parameswaran, A.J., Subramanian, S.: Monodromy group for a strongly semistable principal bundle over a curve.Duke Math. J. 132 (2006), 1–48. MR 2219253 |
Reference:
|
[6] Deligne, P., Milne, J.S.: Tannakian Categories.Hodge cycles, motives and Shimura varieties, Lecture Notes in Math, vol. 900, Springer–Verlag, Berlin–Heidelberg–New York, 1982. MR 0654325, 10.1007/978-3-540-38955-2 |
Reference:
|
[7] Hogadi, A., Mehta, V.B.: Birational invariance of the S-fundamental group scheme.Pure Appl. Math. Q. 7 (4) (2011), 1361–1369, Special Issue: In memory of Eckart Viehweg. MR 2918164, 10.4310/PAMQ.2011.v7.n4.a12 |
Reference:
|
[8] Ishimura, S.: A descent problem of vector bundles and its applications.J. Math. Kyoto Univ. 23 (1983), 73–83. MR 0692730, 10.1215/kjm/1250521611 |
Reference:
|
[9] Lange, H., Stuhler, U.: Vektorbündel auf Kurven und Darstellungen der algebraischen Fudamentalgruppe.Math. Z. 156 (1977), 73–83. MR 0472827, 10.1007/BF01215129 |
Reference:
|
[10] Langer, A.: Semistable sheaves in positive characteristic.Ann. of Math. 159 (2004), 251–276. MR 2051393, 10.4007/annals.2004.159.251 |
Reference:
|
[11] Langer, A.: On S-fundamental group scheme.Ann. Inst. Fourier (Grenoble) 61 (5) (2011), 2077–2119. MR 2961849, 10.5802/aif.2667 |
Reference:
|
[12] Lekaus, S.: Vector bundles of degree zero over an elliptic curve.C. R. Math. Acad. Sci. Paris 335 (2002), 351–354. MR 1931515, 10.1016/S1631-073X(02)02478-0 |
Reference:
|
[13] Nori, M.V.: The fundamental group-scheme.Proc. Indian Acad. Sci. Math. Sci. 91 (2) (1982), 73–122. MR 0682517, 10.1007/BF02967978 |
Reference:
|
[14] Oda, T.: Vector bundles on an elliptic curve.Nagoya Math. J. 43 (1971), 41–72. MR 0318151, 10.1017/S0027763000014367 |
Reference:
|
[15] Otabe, S.: An extension of Nori fundamental group.Comm. Algebra 45 (2017), 3422–3448. MR 3609350, 10.1080/00927872.2016.1236936 |
. |