Title:
|
Unit-regularity and representability for semiartinian $*$-regular rings (English) |
Author:
|
Herrmann, Christian |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
56 |
Issue:
|
1 |
Year:
|
2020 |
Pages:
|
43-47 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that any semiartinian $*$-regular ring $R$ is unit-regular; if, in addition, $R$ is subdirectly irreducible then it admits a representation within some inner product space. (English) |
Keyword:
|
$*$-regular ring |
Keyword:
|
representable |
Keyword:
|
unit-regular |
MSC:
|
16E50 |
MSC:
|
16W10 |
idZBL:
|
Zbl 07177879 |
idMR:
|
MR4075887 |
DOI:
|
10.5817/AM2020-1-43 |
. |
Date available:
|
2020-03-02T09:07:58Z |
Last updated:
|
2020-08-26 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148035 |
. |
Reference:
|
[1] Baccella, G., Spinosa, L.: $K_0$ of semiartinian von Neumann regular rings. Direct finiteness versusunit-regularity.Algebr. Represent. Theory 20 (2017), 1189–1213. MR 3707911, 10.1007/s10468-017-9682-3 |
Reference:
|
[2] Berberian, S.K.: Baer *-rings.Springer, Grundlehren 195, Berlin, 1972. MR 0429975 |
Reference:
|
[3] Goodearl, K.R.: Von Neumann Regular Rings.2nd ed., Krieger, Malabar, 1991. MR 1150975 |
Reference:
|
[4] Gross, H.: Quadratic Forms in Infinite Dimensional Vector spaces.Birkhäuser, Basel, 1979. MR 0537283 |
Reference:
|
[5] Handelman, D.: Finite Rickart C$^*$-algebras and their properties.Adv. in Math. Suppl. Stud., vol. 4, Academic Press, New York-London, Studies in analysis ed., 1979, pp. 171–196. MR 0546806 |
Reference:
|
[6] Herrmann, C.: Varieties of $*$-regular rings.http://arxiv.org/abs/1904.04505. |
Reference:
|
[7] Herrmann, C.: On the equational theory of projection lattices of finitevon Neumann factors.J. Symbolic Logic 75 (3) (2010), 1102–1110. MR 2723786, 10.2178/jsl/1278682219 |
Reference:
|
[8] Herrmann, C.: Direct finiteness of representable regular $*$-rings.Algebra Universalis 80 (1) (2019), 5 pp., http://arxiv.org/abs/1904.04505. MR 3904443 |
Reference:
|
[9] Herrmann, C., Semenova, M.V.: Rings of quotients of finite AW$^*$-algebras. Representation and algebraic approximation.Algebra Logika 53 (4) (2014), 466–504, 550–551, (Russian), translation inAlgebra Logic 53 (2014), no. 4, 298–322. MR 3309850, 10.1007/s10469-014-9292-7 |
Reference:
|
[10] Herrmann, C., Semenova, M.V.: Linear representations of regular rings and complemented modular lattices with involution.Acta Sci. Math. (Szeged) 82 (3–4) (2016), 395–442. MR 3616186, 10.14232/actasm-015-283-5 |
Reference:
|
[11] Jacobson, N.: Structure of Rings.AMS Col. Publ. XXXVII, Amer. Math. Soc., Providence, RI, 1956. Zbl 0073.02002, MR 0081264 |
Reference:
|
[12] Micol, F.: On representability of $\ast $-regular rings and modular ortholattices.Ph.D. thesis, TU Darmstadt, January 2003, http://elib.tu-darmstadt.de/diss/000303/diss.pdf. |
Reference:
|
[13] Wehrung, F.: A uniform refinement property for congruence lattices.Proc. Amer. Math. Soc. 127 (1999), 363–370. Zbl 0902.06006, MR 1468207, 10.1090/S0002-9939-99-04558-X |
. |