Title:
|
Composite positive integers whose sum of prime factors is prime (English) |
Author:
|
Luca, Florian |
Author:
|
Moodley, Damon |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
56 |
Issue:
|
1 |
Year:
|
2020 |
Pages:
|
49-64 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this note, we show that the counting function of the number of composite positive integers $n\le x$ such that $\beta (n)=\sum _{p\mid n} p$ is a prime is of order of magnitude at least $x/(\log x)^3$ and at most $x/ \log x$. (English) |
Keyword:
|
primes |
Keyword:
|
applications of sieve methods |
MSC:
|
11N25 |
MSC:
|
11N36 |
idZBL:
|
Zbl 07177880 |
idMR:
|
MR4075888 |
DOI:
|
10.5817/AM2020-1-49 |
. |
Date available:
|
2020-03-02T09:08:56Z |
Last updated:
|
2020-08-26 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148036 |
. |
Reference:
|
[1] Bateman, P.T., Horn, R.A.: A heuristic asymptotic formula concerning the distribution of prime numbers.Math. Comp. 16 (1962), 363–367. MR 0148632, 10.1090/S0025-5718-1962-0148632-7 |
Reference:
|
[2] Chudakov, N.: On Goldbach-Vinogradov’s theorem.Ann. of Math. (2) 48 (1947), 515–545. MR 0021021, 10.2307/1969127 |
Reference:
|
[3] De Koninck, J.-M., Luca, F.: Integers divisible by the sum of their prime factors.Mathematika 52 (2005), 69–77. MR 2261843, 10.1112/S0025579300000346 |
Reference:
|
[4] De Koninck, J.-M., Luca, F.: Integers divisible by sums of powers of their prime factors.J. Number Theory 128 (2008), 557–563. MR 2389855, 10.1016/j.jnt.2007.01.010 |
Reference:
|
[5] De Koninck, J.-M., Luca, F.: Analytic number theory. Exploring the anatomy of integers.Graduate Studies in Mathematics, vol. 134, American Mathematical Society, Providence, RI, 2012. MR 2919246 |
Reference:
|
[6] De Koninck, J.-M., Sitaramachandra, R.R.: Sums involving the largest prime divisor of an integer.Acta Arith. 48 (1987), 3–8. MR 0893458 |
Reference:
|
[7] Erdös, P., Pomerance, C.: On the largest prime factors of $n$ and $n+1$.Aequationes Math. 17 (1978), 311–321. MR 0480303, 10.1007/BF01818569 |
Reference:
|
[8] Nelson, C., Penny, D.E., Pomerance, C.: 714 and 715.J. Recreational Math. 7 (1974), 87–89. MR 3821619 |
Reference:
|
[9] Pomerance, C.: Ruth–Aaron numbers revisited.Paul Erdös and his Mathematics, vol. 11, János Bolyai Math. Soc., Budapest 1999, Bolyai Soc. Math. Stud., 2002, pp. 567–579. MR 1954715 |
Reference:
|
[10] Wheeler, F.S.: Two differential-difference equations arising in number theory.Trans. Amer. Math. Soc. 318 (1990), 491–523. MR 0963247, 10.1090/S0002-9947-1990-0963247-X |
. |