Previous |  Up |  Next

Article

Title: Composite positive integers whose sum of prime factors is prime (English)
Author: Luca, Florian
Author: Moodley, Damon
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 1
Year: 2020
Pages: 49-64
Summary lang: English
.
Category: math
.
Summary: In this note, we show that the counting function of the number of composite positive integers $n\le x$ such that $\beta (n)=\sum _{p\mid n} p$ is a prime is of order of magnitude at least $x/(\log x)^3$ and at most $x/ \log x$. (English)
Keyword: primes
Keyword: applications of sieve methods
MSC: 11N25
MSC: 11N36
idZBL: Zbl 07177880
idMR: MR4075888
DOI: 10.5817/AM2020-1-49
.
Date available: 2020-03-02T09:08:56Z
Last updated: 2020-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/148036
.
Reference: [1] Bateman, P.T., Horn, R.A.: A heuristic asymptotic formula concerning the distribution of prime numbers.Math. Comp. 16 (1962), 363–367. MR 0148632, 10.1090/S0025-5718-1962-0148632-7
Reference: [2] Chudakov, N.: On Goldbach-Vinogradov’s theorem.Ann. of Math. (2) 48 (1947), 515–545. MR 0021021, 10.2307/1969127
Reference: [3] De Koninck, J.-M., Luca, F.: Integers divisible by the sum of their prime factors.Mathematika 52 (2005), 69–77. MR 2261843, 10.1112/S0025579300000346
Reference: [4] De Koninck, J.-M., Luca, F.: Integers divisible by sums of powers of their prime factors.J. Number Theory 128 (2008), 557–563. MR 2389855, 10.1016/j.jnt.2007.01.010
Reference: [5] De Koninck, J.-M., Luca, F.: Analytic number theory. Exploring the anatomy of integers.Graduate Studies in Mathematics, vol. 134, American Mathematical Society, Providence, RI, 2012. MR 2919246
Reference: [6] De Koninck, J.-M., Sitaramachandra, R.R.: Sums involving the largest prime divisor of an integer.Acta Arith. 48 (1987), 3–8. MR 0893458
Reference: [7] Erdös, P., Pomerance, C.: On the largest prime factors of $n$ and $n+1$.Aequationes Math. 17 (1978), 311–321. MR 0480303, 10.1007/BF01818569
Reference: [8] Nelson, C., Penny, D.E., Pomerance, C.: 714 and 715.J. Recreational Math. 7 (1974), 87–89. MR 3821619
Reference: [9] Pomerance, C.: Ruth–Aaron numbers revisited.Paul Erdös and his Mathematics, vol. 11, János Bolyai Math. Soc., Budapest 1999, Bolyai Soc. Math. Stud., 2002, pp. 567–579. MR 1954715
Reference: [10] Wheeler, F.S.: Two differential-difference equations arising in number theory.Trans. Amer. Math. Soc. 318 (1990), 491–523. MR 0963247, 10.1090/S0002-9947-1990-0963247-X
.

Files

Files Size Format View
ArchMathRetro_056-2020-1_6.pdf 561.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo