Previous |  Up |  Next

Article

Title: Functional inequalities and manifolds with nonnegative weighted Ricci curvature (English)
Author: Mao, Jing
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 213-233
Summary lang: English
.
Category: math
.
Summary: We show that $n$-dimensional $(n\geqslant 2)$ complete and noncompact metric measure spaces with nonnegative weighted Ricci curvature in which some Caffarelli-Kohn-Nirenberg type inequality holds are isometric to the model metric measure $n$-space (i.e. the Euclidean metric $n$-space). We also show that the Euclidean metric spaces are the only complete and noncompact metric measure spaces of nonnegative weighted Ricci curvature satisfying some prescribed Sobolev type inequality. (English)
Keyword: Caffarelli-Kohn-Nirenberg type inequality
Keyword: weighted Ricci curvature
Keyword: volume comparison
MSC: 31C12
MSC: 53C21
idZBL: 07217130
idMR: MR4078355
DOI: 10.21136/CMJ.2019.0214-18
.
Date available: 2020-03-10T10:18:25Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148051
.
Reference: [1] Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev.J. Differ. Geom. 11 (1976), 573-598 French. Zbl 0371.46011, MR 0448404, 10.4310/jdg/1214433725
Reference: [2] Aubin, T.: Nonlinear Analysis on Manifolds. Monge-Ampère Equations.Grundlehren der Mathematischen Wissenschaften 252, Springer, New York (1982). Zbl 0512.53044, MR 0681859, 10.1007/978-1-4612-5734-9
Reference: [3] Aubin, T.: Some Nonlinear Problems in Riemannian Geometry.Springer Monographs in Mathematics, Springer, Berlin (1998). Zbl 0896.53003, MR 1636569, 10.1007/978-3-662-13006-3
Reference: [4] Bakry, D., Émery, M.: Hypercontractivité de semi-groupes de diffusion.C. R. Acad. Sci., Paris, Sér. I 299 (1984), 775-778 French. Zbl 0563.60068, MR 0772092
Reference: [5] Bakry, D., Émery, M.: Diffusions hypercontractives.Séminaire de probabilités XIX 1983/84 Lecture Notes in Mathematics 1123, Springer, Berlin (1985), 177-206. Zbl 0561.60080, MR 0889476, 10.1007/BFb0075847
Reference: [6] Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights.Compos. Math. 53 (1984), 259-275. Zbl 0563.46024, MR 0768824
Reference: [7] Catrina, F., Wang, Z.-Q.: On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions.Commun. Pure Appl. Math. 54 (2001), 229-258. Zbl 1072.35506, MR 1794994, 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I
Reference: [8] Chavel, I.: Eigenvalues in Riemannian Geometry.Pure and Applied Mathematics 115, Academic Press, Orlando (1984). Zbl 0551.53001, MR 0768584, 10.1016/S0079-8169(13)62888-3
Reference: [9] Carmo, M. do, Xia, C.: Ricci curvature and the topology of open manifolds.Math. Ann. 316 (2000), 319-400. Zbl 0958.53025, MR 1741276, 10.1007/s002080050018
Reference: [10] Carmo, M. P. do, Xia, C.: Complete manifolds with non-negative Ricci curvature and the Caffarelli-Kohn-Nirenberg inequalities.Compos. Math. 140 (2004), 818-826. Zbl 1066.53073, MR 2041783, 10.1112/S0010437X03000745
Reference: [11] Freitas, P., Mao, J., Salavessa, I.: Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds.Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. Zbl 1302.35275, MR 3268868, 10.1007/s00526-013-0692-7
Reference: [12] Gray, A.: Tubes.Addison-Wesley Publishing Company, Redwood City (1990). Zbl 0692.53001, MR 1044996, 10.1007/978-3-0348-7966-8
Reference: [13] Hardy, G. H., Littlewood, J.-E., Pólya, G.: Inequalities.Cambridge University Press, Cambridge (1952). Zbl 0047.05302, MR 0046395
Reference: [14] Hebey, E.: Sobolev Spaces on Riemannian Manifolds.Lecture Notes in Mathematics 1635, Springer, Berlin (1996). Zbl 0866.58068, MR 1481970, 10.1007/BFb0092907
Reference: [15] Katz, N. N., Kondo, K.: Generalized space forms.Trans. Am. Math. Soc. 354 (2002), 2279-2284. Zbl 0990.53032, MR 1885652, 10.1090/S0002-9947-02-02966-5
Reference: [16] Kondo, K., Tanaka, M.: Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below. I.Math. Ann. 351 (2011), 251-266. Zbl 1243.53072, MR 2836657, 10.1007/s00208-010-0593-4
Reference: [17] Ledoux, M.: On manifolds with non-negative Ricci curvature and Sobolev inequalities.Commun. Anal. Geom. 7 (1999), 347-353. Zbl 0953.53025, MR 1685586, 10.4310/CAG.1999.v7.n2.a7
Reference: [18] Lieb, E. H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities.Ann. Math. (2) 118 (1983), 349-374. Zbl 0527.42011, MR 0717827, 10.2307/2007032
Reference: [19] Lott, J.: Some geometric properties of the Bakry-Émery-Ricci tensor.Comment. Math. Helv. 78 (2003), 865-883. Zbl 1038.53041, MR 2016700, 10.1007/s00014-003-0775-8
Reference: [20] Mao, J.: Open manifold with nonnegative Ricci curvature and collapsing volume.Kyushu J. Math. 66 (2012), 509-516. Zbl 1276.53045, MR 3051351, 10.2206/kyushujm.66.509
Reference: [21] Mao, J.: Eigenvalue Estimation and Some Results on Finite Topological Type.Ph.D. Thesis, IST-UTL (2013).
Reference: [22] Mao, J.: Eigenvalue inequalities for the $p$-Laplacian on a Riemannian manifold and estimates for the heat kernel.J. Math. Pures Appl. (9) 101 (2014), 372-393. Zbl 1285.58013, MR 3168915, 10.1016/j.matpur.2013.06.006
Reference: [23] Mao, J.: The Gagliardo-Nirenberg inequalities and manifolds with non-negative weighted Ricci curvature.Kyushu J. Math. 70 (2016), 29-46. Zbl 1342.53056, MR 3444586, 10.2206/kyushujm.70.029
Reference: [24] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications.Available at https://arxiv.org/abs/math/0211159 (2002). Zbl 1130.53001
Reference: [25] Petersen, P.: Comparison geometry problem list.Riemannian Geometry Fields Institute Monographs 4, American Mathematical Society, Providence (1996), 87-115. Zbl 0843.53031, MR 1377310, 10.1090/fim/004/04
Reference: [26] Schoen, R., Yau, S.-T.: Lectures on Differential Geometry.Conference Proceedings and Lecture Notes in Geometry and Topology 1, International Press, Cambridge (1994). Zbl 0830.53001, MR 1333601
Reference: [27] Shiohama, K., Tanaka, M.: Compactification and maximal diameter theorem for noncompact manifolds with radial curvature bounded below.Math. Z. 241 (2002), 341-351. Zbl 1020.53019, MR 1935490, 10.1007/s002090200418
Reference: [28] Talenti, G.: Best constant in Sobolev inequality.Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. Zbl 0353.46018, MR 0463908, 10.1007/BF02418013
Reference: [29] Wei, G., Wylie, W.: Comparison geometry for the Bakry-Emery Ricci tensor.J. Differ. Geom. 83 (2009), 377-405. Zbl 1189.53036, MR 2577473, 10.4310/jdg/1261495336
Reference: [30] Xia, C.: Complete manifolds with nonnegative Ricci curvature and almost best Sobolev constant.Ill. J. Math. 45 (2001), 1253-1259. Zbl 0996.53024, MR 1894894, 10.1215/ijm/1258138064
Reference: [31] Xia, C.: The Gagliardo-Nirenberg inequalities and manifolds of non-negative Ricci curvature.J. Funct. Anal. 224 (2005), 230-241. Zbl 1071.53019, MR 2139111, 10.1016/j.jfa.2004.11.009
Reference: [32] Xia, C.: The Caffarelli-Kohn-Nirenberg inequalities on complete manifolds.Math. Res. Lett. 14 (2007), 875-885. Zbl 1143.53036, MR 2350131, 10.4310/MRL.2007.v14.n5.a14
.

Files

Files Size Format View
CzechMathJ_70-2020-1_13.pdf 394.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo