Previous |  Up |  Next

Article

Title: The equidistribution of Fourier coefficients of half integral weight modular forms on the plane (English)
Author: Mezroui, Soufiane
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 235-249
Summary lang: English
.
Category: math
.
Summary: Let $f=\sum _{n=1}^{\infty }a(n)q^{n}\in S_{k+1/2}(N,\chi _{0})$ be a nonzero cuspidal Hecke eigenform of weight $k+\frac {1}{2}$ and the trivial nebentypus $\chi _{0}$, where the Fourier coefficients $a(n)$ are real. Bruinier and Kohnen conjectured that the signs of $a(n)$ are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies $\{a(t n^{2})\}_{n}$, where $t$ is a squarefree integer such that $a(t)\neq 0$. Let $q$ and $d$ be natural numbers such that $(d,q)=1$. In this work, we show that $\{a(t n^{2})\}_{n}$ is equidistributed over any arithmetic progression $n\equiv d \mod q$. (English)
Keyword: Shimura lift
Keyword: Fourier coefficient
Keyword: half-integral weight
Keyword: Sato-Tate equidistribution
MSC: 11F30
MSC: 11F37
idZBL: 07217131
idMR: MR4078356
DOI: 10.21136/CMJ.2019.0223-18
.
Date available: 2020-03-10T10:18:52Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148052
.
Reference: [1] Akiyama, S., Tanigawa, Y.: Calculation of values of $L$-functions associated to elliptic curves.Math. Comput. 68 (1999), 1201-1231. Zbl 0923.11100, MR 1627842, 10.1090/S0025-5718-99-01051-0
Reference: [2] Arias-de-Reyna, S., Inam, I., Wiese, G.: On conjectures of Sato-Tate and Bruinier-Kohnen.Ramanujan J. 36 (2015), 455-481. Zbl 1383.11112, MR 3317867, 10.1007/s11139-013-9547-2
Reference: [3] Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of Calabi-Yau varieties and potential automorphy. II.Publ. Res. Inst. Math. Sci. 47 (2011), 29-98. Zbl 1264.11044, MR 2827723, 10.2977/PRIMS/31
Reference: [4] Bruinier, J. H., Kohnen, W.: Sign changes of coefficients of half integral weight modular forms.Modular Forms on Schiermonnikoog B. Edixhoven et al. Cambridge University Press, Cambridge (2008), 57-65. Zbl 1228.11061, MR 2512356, 10.1017/CBO9780511543371.005
Reference: [5] Delange, H.: Un théorème sur les fonctions arithmétiques multiplicatives et ses applications.Ann. Sci. Éc. Norm. Supér. (3) 78 (1961), 1-29 French. Zbl 0109.03106, MR 0169828, 10.24033/asens.1097
Reference: [6] Inam, I., Wiese, G.: Equidistribution of signs for modular eigenforms of half integral weight.Arch. Math. 101 (2013), 331-339. Zbl 1333.11042, MR 3116654, 10.1007/s00013-013-0566-4
Reference: [7] Inam, I., Wiese, G.: A short note on the Bruiner-Kohnen sign equidistribution conjecture and Halász' theorem.Int. J. Number Theory 12 (2016), 357-360. Zbl 1404.11053, MR 3461436, 10.1142/S1793042116500214
Reference: [8] Kohnen, W., Lau, Y.-K., Wu, J.: Fourier coefficients of cusp forms of half-integral weight.Math. Z. 273 (2013), 29-41. Zbl 1302.11026, MR 3010150, 10.1007/s00209-012-0994-z
Reference: [9] Korevaar, J.: The Wiener-Ikehara theorem by complex analysis.Proc. Am. Math. Soc. 134 (2006), 1107-1116. Zbl 1080.40003, MR 2196045, 10.1090/S0002-9939-05-08060-3
Reference: [10] Mezroui, S.: Sign changes of a product of Dirichlet character and Fourier coefficients of half integral weight modular forms.Available at https://arxiv.org/abs/1706.05013, (2017), 7 pages.
Reference: [11] Murty, M. R., Murty, V. K.: The Sato-Tate conjecture and generalizations.Math. Newsl., Ramanujan Math. Soc. 19 (2010), 247-257. Zbl 1223.11071, MR 3012726
Reference: [12] Shimura, G.: On modular forms of half-integral weight.Ann. Math. (2) 97 (1973), 440-481. Zbl 0266.10022, MR 0332663, 10.2307/1970831
Reference: [13] Wong, P-J.: On the Chebotarev-Sato-Tate phenomenon.J. Number Theory 196 (2019), 272-290. Zbl 06987935, MR 3906478, 10.1016/j.jnt.2018.09.010
.

Files

Files Size Format View
CzechMathJ_70-2020-1_14.pdf 320.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo