Title:
|
Pell and Pell-Lucas numbers of the form $-2^a-3^b+5^c$ (English) |
Author:
|
Qu, Yunyun |
Author:
|
Zeng, Jiwen |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
70 |
Issue:
|
1 |
Year:
|
2020 |
Pages:
|
281-289 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we find all Pell and Pell-Lucas numbers written in the form $-2^a-3^b+5^c$, in nonnegative integers $a$, $b$, $c$, with $0\leq \max \{a,b\}\leq c$. (English) |
Keyword:
|
Pell number |
Keyword:
|
Pell-Lucas number |
Keyword:
|
linear form in logarithms |
Keyword:
|
continued fraction |
Keyword:
|
reduction method |
MSC:
|
11B39 |
MSC:
|
11D61 |
MSC:
|
11J86 |
idZBL:
|
07217134 |
idMR:
|
MR4078359 |
DOI:
|
10.21136/CMJ.2019.0265-18 |
. |
Date available:
|
2020-03-10T10:20:20Z |
Last updated:
|
2022-04-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148055 |
. |
Reference:
|
[1] Bravo, E. F., Bravo, J. J.: Powers of two as sums of three Fibonacci numbers.Lith. Math. J. 55 (2015), 301-311. Zbl 1356.11009, MR 3379028, 10.1007/s10986-015-9282-z |
Reference:
|
[2] Bravo, J. J., Das, P., Guzmán, S., Laishram, S.: Powers in products of terms of Pell's and Pell-Lucas sequences.Int. J. Number Theory 11 (2015), 1259-1274. Zbl 1390.11068, MR 3340693, 10.1142/S1793042115500682 |
Reference:
|
[3] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations. I: Fibonacci and Lucas perfect powers.Ann. Math. (2) 163 (2006), 969-1018. Zbl 1113.11021, MR 2215137, 10.4007/annals.2006.163.969 |
Reference:
|
[4] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport.Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. Zbl 0911.11018, MR 1645552, 10.1093/qjmath/49.195.291 |
Reference:
|
[5] Koshy, T.: Fibonacci and Lucas Numbers with Applications.Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts, Wiley, New York (2001). Zbl 0984.11010, MR 1855020, 10.1002/9781118033067 |
Reference:
|
[6] Luca, F.: Fibonacci numbers of the form $k^2+k+2$.Applications of Fibonacci Numbers, Volume 8 F. T. Howard Kluwer Academic Publishers, Dordrecht (1999), 241-249. Zbl 0979.11012, MR 1737677, 10.1007/978-94-011-4271-7_24 |
Reference:
|
[7] Luca, F., Szalay, L.: Fibonacci numbers of the form $p^a\pm p^b+1$.Fibonacci Q. 45 (2007), 98-103. Zbl 1228.11021, MR 2407759 |
Reference:
|
[8] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II.Izv. Math. 64 (2000), 1217-1269 English. Russian original translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 2000 125-180. Zbl 1013.11043, MR 1817252, 10.1070/IM2000v064n06ABEH000314 |
Reference:
|
[9] McDaniel, W. L.: Triangular numbers in the Pell sequence.Fibonacci Q. 34 (1996), 105-107. Zbl 0860.11007, MR 1386977 |
Reference:
|
[10] Pethő, A.: The Pell sequence contains only trivial perfect powers.Sets, Graphs and Numbers G. Halász, et al. Colloq. Math. Soc. János Bolyai 60, North-Holland Publishing Company, Amsterdam (1992), 561-568. Zbl 0790.11021, MR 1218218 |
Reference:
|
[11] Robbins, N.: Fibonacci numbers of the forms $pX^2\pm 1$, $pX^3\pm 1,$ where $p$ is prime.Applications of Fibonacci Numbers Kluwer Acad. Publ., Dordrecht (1988), 77-88. Zbl 0647.10013, MR 0951908, 10.1007/978-94-015-7801-1_9 |
. |