Previous |  Up |  Next

Article

Title: Associated graded rings and connected sums (English)
Author: Ananthnarayan, H.
Author: Celikbas, Ela
Author: Laxmi, Jai
Author: Yang, Zheng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 261-279
Summary lang: English
.
Category: math
.
Summary: In 2012, Ananthnarayan, Avramov and Moore gave a new construction of Gorenstein rings from two Gorenstein local rings, called their connected sum. In this article, we investigate conditions on the associated graded ring of a Gorenstein Artin local ring $Q$, which force it to be a connected sum over its residue field. In particular, we recover some results regarding short, and stretched, Gorenstein Artin rings. Finally, using these decompositions, we obtain results about the rationality of the Poincaré series of $Q$. (English)
Keyword: associated graded ring
Keyword: fibre product
Keyword: connected sum
Keyword: short Gorenstein ring
Keyword: stretched Gorenstein ring
Keyword: Poincaré series
MSC: 13A30
MSC: 13D40
MSC: 13H10
idZBL: 07217133
idMR: MR4078358
DOI: 10.21136/CMJ.2019.0259-18
.
Date available: 2020-03-10T10:19:53Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148054
.
Reference: [1] Ananthnarayan, H.: Approximating Artinian Rings by Gorenstein Rings and Three-Standardness of the Maximal Ideal.Ph.D. Thesis, University of Kansas (2009).
Reference: [2] Ananthnarayan, H., Avramov, L. L., Moore, W. F.: Connected sums of Gorenstein local rings.J. Reine Angew. Math. 667 (2012), 149-176. Zbl 1271.13047, MR 2929675, 10.1515/CRELLE.2011.132
Reference: [3] Ananthnarayan, H., Celikbas, E., Laxmi, J., Yang, Z.: Decomposing Gorenstein rings as connected sums.J. Algebra 527 (2019), 241-263. Zbl 1410.13014, MR 3924433, 10.1016/j.jalgebra.2019.01.036
Reference: [4] Avramov, L. L., Kustin, A. R., Miller, M.: Poincaré series of modules over local rings of small embedding codepth or small linking number.J. Algebra 118 (1988), 162-204. Zbl 0648.13008, MR 0961334, 10.1016/0021-8693(88)90056-7
Reference: [5] Buczyńska, W., Buczyński, J., Kleppe, J., Teitler, Z.: Apolarity and direct sum decomposability of polynomials.Mich. Math. J. 64 (2015), 675-719. Zbl 1339.13012, MR 3426613, 10.1307/mmj/1447878029
Reference: [6] Casnati, G., Elias, J., Notari, R., Rossi, M. E.: Poincaré series and deformations of Gorenstein local algebras.Commun. Algebra 41 (2013), 1049-1059. Zbl 1274.13032, MR 3037178, 10.1080/00927872.2011.636643
Reference: [7] Elias, J., Rossi, M. E.: Isomorphism classes of short Gorenstein local rings via Macaulay's inverse system.Trans. Am. Math. Soc. 364 (2012), 4589-4604. Zbl 1281.13015, MR 2922602, 10.1090/S0002-9947-2012-05430-4
Reference: [8] Iarrobino, A.: The Hilbert function of a Gorenstein Artin algebra.Commutative Algebra Mathematics Sciences Research Institute Publications 15, Springer, New York (1989), 347-364. Zbl 0733.13008, MR 1015527, 10.1007/978-1-4612-3660-3_18
Reference: [9] Lescot, J.: La série de Bass d'un produit fibré d'anneaux locaux.Sémin. d'Algèbre P. Dubreil et M.-P. Malliavin, 35ème Année, Proc Lecture Notes in Math. 1029, Paris, Springer, Berlin French (1983), 218-239. Zbl 0563.13007, MR 0732477, 10.1007/BFb0098933
Reference: [10] Levin, G. L., Avramov, L. L.: Factoring out the socle of a Gorenstein ring.J. Algebra 55 (1978), 74-83. Zbl 0407.13018, MR 0515760, 10.1016/0021-8693(78)90191-6
Reference: [11] Sally, J. D.: Stretched Gorenstein rings.J. Lond. Math. Soc., II. Ser. 20 (1979), 19-26. Zbl 0402.13018, MR 0545198, 10.1112/jlms/s2-20.1.19
Reference: [12] Smith, L., Stong, R. E.: Projective bundle ideals and Poincaré duality algebras.J. Pure Appl. Algebra 215 (2011), 609-627. Zbl 1206.13004, MR 2738376, 10.1016/j.jpaa.2010.06.011
.

Files

Files Size Format View
CzechMathJ_70-2020-1_16.pdf 373.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo