Previous |  Up |  Next


Title: Lucas factoriangular numbers (English)
Author: Kafle, Bir
Author: Luca, Florian
Author: Togbé, Alain
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 1
Year: 2020
Pages: 33-43
Summary lang: English
Category: math
Summary: We show that the only Lucas numbers which are factoriangular are $1$ and $2$. (English)
Keyword: Lucas number
Keyword: factoriangular number
MSC: 11A25
MSC: 11B39
MSC: 11J86
idZBL: 07217178
idMR: MR4088691
DOI: 10.21136/MB.2018.0021-18
Date available: 2020-03-12T08:19:03Z
Last updated: 2020-11-18
Stable URL:
Reference: [1] Bravo, J. J., Luca, F.: Powers of two as sums of two Lucas numbers.J. Integer Seq. 17 (2014), Article No. 14.8.3, 12 pages. Zbl 1358.11026, MR 3248227
Reference: [2] Bugeaud, Y., Laurent, M.: Effective lower bound for the $p$-adic distance between powers of algebraic numbers.J. Number Theory 61 (1996), 311-342 French. Zbl 0870.11045, MR 1423057, 10.1006/jnth.1996.0152
Reference: [3] Bugeaud, Y., Luca, F., Mignotte, M., Siksek, S.: Almost powers in the Lucas sequence.J. Théor. Nombres Bordx. 20 (2008), 555-600. Zbl 1204.11030, MR 2523309, 10.5802/jtnb.642
Reference: [4] Castillo, R. C.: On the sum of corresponding factorials and triangular numbers: Some preliminary results.Asia Pac. J. Multidisciplinary Research 3 (2015), 5-11.
Reference: [5] Ruiz, C. A. Gómez, Luca, F.: Fibonacci factoriangular numbers.Indag. Math., New Ser. 28 (2017), 796-804. Zbl 1373.11011, MR 3679743, 10.1016/j.indag.2017.05.002
Reference: [6] Koshy, T.: Fibonacci and Lucas Numbers with Applications.Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley-Interscience, New York (2001). Zbl 0984.11010, MR 1855020, 10.1002/9781118033067
Reference: [7] Luca, F., Odjoumani, J., Togbé, A.: Pell factoriangular numbers.(to appear) in Publ. Inst. Math. Beograd, N.S. MR 3956571
Reference: [8] Ming, L.: On triangular Lucas numbers.Applications of Fibonacci Numbers. Vol. 4. Proc. 4th Int. Conf. on Fibonacci Numbers and Their Applications, Wake Forest University, Winston-Salem, USA, 1990 Kluwer Academic Publishers, Dordrecht (1991), 231-240 G. E. Bergun et al. Zbl 0749.11016, MR 1193719, 10.1007/978-94-011-3586-3_26
Reference: [9] Robbins, H.: A remark on Stirling's formula.Am. Math. Mon. 62 (1955), 26-29. Zbl 0068.05404, MR 0069328, 10.2307/2308012


Files Size Format View
MathBohem_145-2020-1_4.pdf 274.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo