Previous |  Up |  Next

Article

Title: Fermat $k$-Fibonacci and $k$-Lucas numbers (English)
Author: Bravo, Jhon J.
Author: Herrera, Jose L.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 1
Year: 2020
Pages: 19-32
Summary lang: English
.
Category: math
.
Summary: Using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and Pethő, we find all $k$-Fibonacci and $k$-Lucas numbers which are Fermat numbers. Some more general results are given. (English)
Keyword: generalized Fibonacci number
Keyword: Fermat number, linear form in logarithms
Keyword: reduction method
MSC: 11B39
MSC: 11J86
idZBL: 07217177
idMR: MR4088690
DOI: 10.21136/MB.2018.0015-18
.
Date available: 2020-03-12T08:18:32Z
Last updated: 2020-11-18
Stable URL: http://hdl.handle.net/10338.dmlcz/148061
.
Reference: [1] Bravo, E. F., Bravo, J. J., Luca, F.: Coincidences in generalized Lucas sequences.Fibonacci Q. 52 (2014), 296-306. Zbl 1375.11014, MR 3276052
Reference: [2] Bravo, J. J., Gómez, C. A., Luca, F.: Powers of two as sums of two $k$-Fibonacci numbers.Miskolc Math. Notes 17 (2016), 85-100. Zbl 1389.11041, MR 3527869, 10.18514/MMN.2016.1505
Reference: [3] Bravo, J. J., Luca, F.: Powers of two in generalized Fibonacci sequences.Rev. Colomb. Mat. 46 (2012), 67-79. Zbl 1353.11020, MR 2945671
Reference: [4] Bravo, J. J., Luca, F.: On a conjecture about repdigits in $k$-generalized Fibonacci sequences.Publ. Math. 82 (2013), 623-639. Zbl 1274.11035, MR 3066434, 10.5486/PMD.2013.5390
Reference: [5] Bravo, J. J., Luca, F.: Repdigits in $k$-Lucas sequences.Proc. Indian Acad. Sci., Math. Sci. 124 (2014), 141-154. Zbl 1382.11019, MR 3218885, 10.1007/s12044-014-0174-7
Reference: [6] Dresden, G. P., Du, Z.: A simplified Binet formula for $k$-generalized Fibonacci numbers.J. Integer Seq. 17 (2014), Article No. 14.4.7, 9 pages. Zbl 1360.11031, MR 3181762
Reference: [7] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport.Quart. J. Math., Oxf. II. Ser. 49 (1998), 291-306. Zbl 0911.11018, MR 1645552, 10.1093/qjmath/49.195.291
Reference: [8] Finkelstein, R.: On Fibonacci numbers which are more than a square.J. Reine Angew. Math. 262/263 (1973), 171-178. Zbl 0265.10008, MR 0325511, 10.1515/crll.1973.262-263.171
Reference: [9] Finkelstein, R.: On Lucas numbers which are one more than a square.Fibonacci Q. 136 (1975), 340-342. Zbl 0319.10011, MR 0422134
Reference: [10] Hua, L. K., Wang, Y.: Applications of Number Theory to Numerical Analysis.Springer, Berlin; Science Press, Beijing (1981). Zbl 0451.10001, MR 0617192
Reference: [11] Luca, F.: Fibonacci and Lucas numbers with only one distinct digit.Port. Math. 57 (2000), 243-254. Zbl 0958.11007, MR 1759818
Reference: [12] Marques, D.: On $k$-generalized Fibonacci numbers with only one distinct digit.Util. Math. 98 (2015), 23-31. Zbl 1369.11014, MR 3410879
Reference: [13] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II.Izv. Math. 64 (2000), 1217-1269 translated from Izv. Ross. Akad. Nauk Ser. Mat. 64 2000 125-180. Zbl 1013.11043, MR 1817252, 10.1070/IM2000v064n06ABEH000314
Reference: [14] Noe, T. D., Post, J. Vos: Primes in Fibonacci $n$-step and Lucas $n$-step sequences.J. Integer Seq. 8 (2005), Article No. 05.4.4, 12 pages. Zbl 1101.11008, MR 2165333
Reference: [15] Wolfram, D. A.: Solving generalized Fibonacci recurrences.Fibonacci Q. 36 (1998), 129-145. Zbl 0911.11014, MR 1622060
.

Files

Files Size Format View
MathBohem_145-2020-1_3.pdf 302.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo