Previous |  Up |  Next

Article

Title: On a conjecture of Král concerning the subharmonic extension of continuously differentiable functions (English)
Author: Gardiner, Stephen J.
Author: Sjödin, Tomas
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 1
Year: 2020
Pages: 71-73
Summary lang: English
.
Category: math
.
Summary: This note verifies a conjecture of Král, that a continuously differentiable function, which is subharmonic outside its critical set, is subharmonic everywhere. (English)
Keyword: subharmonic function
Keyword: extension theorem
MSC: 31B05
idZBL: 07217181
idMR: MR4088694
DOI: 10.21136/MB.2019.0104-18
.
Date available: 2020-03-12T08:20:33Z
Last updated: 2020-11-18
Stable URL: http://hdl.handle.net/10338.dmlcz/148065
.
Reference: [1] Armitage, D. H., Gardiner, S. J.: Classical Potential Theory.Springer Monographs in Mathematics. Springer, London (2001). Zbl 0972.31001, MR 1801253, 10.1007/978-1-4471-0233-5
Reference: [2] Caffarelli, L. A., Cabré, X.: Fully Nonlinear Elliptic Equations.Colloquium Publications 43. AMS, Providence (1995). Zbl 0834.35002, MR 1351007, 10.1090/coll/043
Reference: [3] Crandall, M. G., Ishii, H., Lions, P.-L.: User's guide to viscosity solutions of second order partial differential equations.Bull. Am. Math. Soc., New Ser. 27 (1992), 1-67. Zbl 0755.35015, MR 1118699, 10.1090/S0273-0979-1992-00266-5
Reference: [4] Juutinen, P., Lindqvist, P.: A theorem of Radó's type for the solutions of a quasi-linear equation.Math. Res. Lett. 11 (2004), 31-34. Zbl 1153.35324, MR 2046197, 10.4310/MRL.2004.v11.n1.a4
Reference: [5] Juutinen, P., Lindqvist, P., Manfredi, J. J.: On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation.SIAM J. Math. Anal. 33 (2001), 699-717. Zbl 0997.35022, MR 1871417, 10.1137/S0036141000372179
Reference: [6] Král, J.: Some extension results concerning harmonic functions.J. Lond. Math. Soc., II. Ser. 28 (1983), 62-70. Zbl 0526.31003, MR 0703465, 10.1112/jlms/s2-28.1.62
Reference: [7] Král, J.: A conjecture concerning subharmonic functions.Čas. Pěst. Mat. 110 (1985), page 415 Czech. 10.21136/CPM.1985.118241
Reference: [8] Pokrovskiĭ, A. V.: A simple proof of the Radó and Král theorems on removability of the zero locus for analytic and harmonic functions.Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2015 (2015), 29-31. Zbl 1340.30135, MR 3718287, 10.15407/dopovidi2015.07.029
Reference: [9] Rudin, W.: Real and Complex Analysis.McGraw-Hill Book Co., New York (1987). Zbl 0925.00005, MR 0924157
.

Files

Files Size Format View
MathBohem_145-2020-1_7.pdf 221.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo