Previous |  Up |  Next

Article

Title: An abstract and generalized approach to the Vitali theorem on nonmeasurable sets (English)
Author: Basu, Sanjib
Author: Sen, Debasish
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 1
Year: 2020
Pages: 65-70
Summary lang: English
.
Category: math
.
Summary: Here we present abstract formulations of two theorems of Solecki which deal with some generalizations of the classical Vitali theorem on nonmeasurable sets in spaces with transformation groups. (English)
Keyword: spaces with transformation groups
Keyword: $k$-additive measurable structure
Keyword: $k$-small system
Keyword: upper semicontinuous $k$-small system
Keyword: $k$-additive algebra admissible with respect to a $k$-small system
MSC: 28A05
MSC: 28D05
idZBL: 07217180
idMR: MR4088693
DOI: 10.21136/MB.2019.0116-17
.
Date available: 2020-03-12T08:20:05Z
Last updated: 2020-11-18
Stable URL: http://hdl.handle.net/10338.dmlcz/148064
.
Reference: [1] Erdős, P., Mauldin, R. D.: The nonexistence of certain invariant measures.Proc. Am. Math. Soc. 59 (1976), 321-322. Zbl 0361.28013, MR 0412390, 10.2307/2041493
Reference: [2] Johnson, R. A., Niewiarowski, J., Świątkowski, T.: Small systems convergence and metrizability.Proc. Am. Math. Soc. 103 (1988), 105-112. Zbl 0651.28004, MR 0938652, 10.2307/2047535
Reference: [3] Kharazishvili, A. B.: On some types of invariant measures.Sov. Math., Dokl. 16 (1975), 681-684 English. Russian original Translated from Dokl. Akad. Nauk SSSR 222 1975 538-540. Zbl 0328.28011, MR 0382603
Reference: [4] Kharazishvili, A. B.: Transformations Groups and Invariant Measures.Set-Theoretic Aspects. World Scientific, Singapore (1998). Zbl 1013.28012, MR 1692839, 10.1142/3810
Reference: [5] Niewiarowski, J.: Convergence of sequences of real functions with respect to small systems.Math. Slovaca 38 (1988), 333-340. Zbl 0659.28004, MR 0978763
Reference: [6] Pelc, A.: Invariant measures and ideals on discrete groups.Diss. Math. 255 (1986), 47 pages. Zbl 0625.04009, MR 0872392
Reference: [7] Riečan, B.: Abstract formulation of some theorems of measure theory.Mat.-Fyz. Čas., Slovensk. Akad. Vied 16 (1966), 268-273. Zbl 0174.34402, MR 0222235
Reference: [8] Riečan, B.: Abstract formulation of some theorems of measure theory. II.Mat. Čas., Slovensk. Akad. Vied 19 (1969), 138-144. Zbl 0193.00903, MR 0302848
Reference: [9] Riečan, B.: A note on measurable sets.Mat. Čas., Slovensk. Akad. Vied 21 (1971), 264-268. Zbl 0237.28001, MR 0306429
Reference: [10] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering.Mathematics and Its Applications 411. Kluwer Academic Publisher, Dordrecht (1997). Zbl 0916.28001, MR 1489521, 10.1007/978-94-015-8919-2
Reference: [11] Riečanová, Z.: On an abstract formulation of regularity.Mat. Čas., Slovensk. Akad. Vied 21 (1971), 117-123. Zbl 0223.28001, MR 0304597
Reference: [12] Solecki, S.: Measurability properties of sets of Vitali's type.Proc. Am. Math. Soc. 119 (1993), 897-902. Zbl 0795.28010, MR 1152992, 10.2307/2160530
Reference: [13] Solecki, S.: On sets nonmeasurable with respect to invariant measures.Proc. Am. Math. Soc. 119 (1993), 115-124. Zbl 0784.28006, MR 1159177, 10.2307/2159832
Reference: [14] Vitali, G.: Sul problema della misura dei gruppi di punti di una retta. Nota.Gamberini e Parmeggiani, Bologna (1905), Italian \99999JFM99999 36.0586.03.
.

Files

Files Size Format View
MathBohem_145-2020-1_6.pdf 254.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo