Previous |  Up |  Next

Article

Keywords:
interval-valued structure; triangle algebra; interval valued residuated lattice filter; $n$-fold interval valued residuated lattice extended filter
Summary:
The present study aimed to introduce $n$-fold interval valued residuated lattice (IVRL for short) filters in triangle algebras. Initially, the notions of $n$-fold (positive) implicative IVRL-extended filters and $n$-fold (positive) implicative triangle algebras were defined. Afterwards, several characterizations of the algebras were presented, and the correlations between the $n$-fold IVRL-extended filters, $n$-fold (positive) implicative algebras, and the Gödel triangle algebra were discussed.
References:
[1] Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic---Studia Logica Library 4. Kluwer Academic Publishers, Dordrecht (1998). DOI 10.1007/978-94-011-5300-3 | MR 1900263 | Zbl 0937.03030
[2] Piciu, D.: Algebras of Fuzzy Logic. Ed. Universtaria, Craiova (2007).
[3] Gasse, B. Van, Cornelis, C., Deschrijver, G., Kerre, E. E.: A characterization of interval-valued residuated lattices. Int. J. Approx. Reasoning 49 (2008), 478-487. DOI 10.1016/j.ijar.2008.04.006 | MR 2460281 | Zbl 1195.03060
[4] Gasse, B. Van, Cornelis, C., Deschrijver, G., Kerre, E. E.: Triangle algebras: A formal logic approach to interval-valued residuated lattices. Fuzzy Sets Syst. 159 (2008), 1042-1060. DOI 10.1016/j.fss.2007.09.003 | MR 2418783 | Zbl 1174.03028
[5] Gasse, B. Van, Deschrijver, G., Cornelis, C., Kerre, E. E.: Filters of residuated lattices and triangle algebras. Inf. Sci. 180 (2010), 3006-3020. DOI 10.1016/j.ins.2010.04.010 | MR 2653329 | Zbl 1206.03058
[6] Ward, M., Dilworth, R. P.: Residuated lattices. Trans. Am. Math. Soc. 45 (1939), 335-354. DOI 10.1090/S0002-9947-1939-1501995-3 | MR 1501995 | Zbl 0021.10801
[7] Zahiri, S., Saeid, A. Borumand, Eslami, E.: A new approach to filters in triangle algebras. Publ. Inst. Math., Nouv. Sér. 101 (115) (2017), 267-283. DOI 10.2298/PIM1715267Z | MR 3700422
Partner of
EuDML logo