Previous |  Up |  Next


critical point; Ekeland variational principle; Mountain Pass Theorem; Palais-Smale condition; positive solution
We discuss the existence and multiplicity of positive solutions for a class of second order quasilinear equations. To obtain our results we will use the Ekeland variational principle and the Mountain Pass Theorem.
[1] Alves, C. O.: Multiple positive solutions for equations involving critical Sobolev exponent in $\mathbb{R}^{N}$. Electron. J. Differ. Equ. 13 (1997), Paper No. 13, 10 pages. MR 1461975 | Zbl 0886.35056
[2] Bouafia, D., Moussaoui, T., O'Regan, D.: Existence of solutions for a second order problem on the half-line via Ekeland's variational principle. Discuss. Math. Differ. Incl. Control Optim. 36 (2016), 131-140. DOI 10.7151/dmdico.1187 | MR 3644383
[3] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2010). DOI 10.1007/978-0-387-70914-7 | MR 2759829 | Zbl 1220.46002
[4] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324-353. DOI 10.1016/0022-247X(74)90025-0 | MR 0346619 | Zbl 0286.49015
[5] Frites, O., Moussaoui, T., O'Regan, D.: Existence of solutions via variational methods for a problem with nonlinear boundary conditions on the half-line. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 22 (2015), 395-407. MR 3423280 | Zbl 1333.34029
[6] Jabri, Y.: The Mountain Pass Theorem. Variants, Generalizations and Some Applications. Encyclopedia of Mathematics and Its Applications 95. Cambridge University Press, Cambridge (2003). DOI 10.1017/CBO9780511546655 | MR 2012778 | Zbl 1036.49001
[7] Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications 24. Birkhäuser, Boston (1996). DOI 10.1007/978-1-4612-4146-1 | MR 1400007 | Zbl 0856.49001
Partner of
EuDML logo