Previous |  Up |  Next

Article

Title: Multiplicity of positive solutions for second order quasilinear equations (English)
Author: Bouafia, Dahmane
Author: Moussaoui, Toufik
Author: O'Regan, Donal
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 1
Year: 2020
Pages: 93-112
Summary lang: English
.
Category: math
.
Summary: We discuss the existence and multiplicity of positive solutions for a class of second order quasilinear equations. To obtain our results we will use the Ekeland variational principle and the Mountain Pass Theorem. (English)
Keyword: critical point
Keyword: Ekeland variational principle
Keyword: Mountain Pass Theorem
Keyword: Palais-Smale condition
Keyword: positive solution
MSC: 30E25
MSC: 35A15
MSC: 35B38
MSC: 49K35
MSC: 58E30
idZBL: 07217183
idMR: MR4088696
DOI: 10.21136/MB.2019.0051-18
.
Date available: 2020-03-12T08:21:29Z
Last updated: 2020-11-18
Stable URL: http://hdl.handle.net/10338.dmlcz/148067
.
Reference: [1] Alves, C. O.: Multiple positive solutions for equations involving critical Sobolev exponent in $\mathbb{R}^{N}$.Electron. J. Differ. Equ. 13 (1997), Paper No. 13, 10 pages. Zbl 0886.35056, MR 1461975
Reference: [2] Bouafia, D., Moussaoui, T., O'Regan, D.: Existence of solutions for a second order problem on the half-line via Ekeland's variational principle.Discuss. Math. Differ. Incl. Control Optim. 36 (2016), 131-140. MR 3644383, 10.7151/dmdico.1187
Reference: [3] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext. Springer, New York (2010). Zbl 1220.46002, MR 2759829, 10.1007/978-0-387-70914-7
Reference: [4] Ekeland, I.: On the variational principle.J. Math. Anal. Appl. 47 (1974), 324-353. Zbl 0286.49015, MR 0346619, 10.1016/0022-247X(74)90025-0
Reference: [5] Frites, O., Moussaoui, T., O'Regan, D.: Existence of solutions via variational methods for a problem with nonlinear boundary conditions on the half-line.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 22 (2015), 395-407. Zbl 1333.34029, MR 3423280
Reference: [6] Jabri, Y.: The Mountain Pass Theorem. Variants, Generalizations and Some Applications.Encyclopedia of Mathematics and Its Applications 95. Cambridge University Press, Cambridge (2003). Zbl 1036.49001, MR 2012778, 10.1017/CBO9780511546655
Reference: [7] Willem, M.: Minimax Theorems.Progress in Nonlinear Differential Equations and Their Applications 24. Birkhäuser, Boston (1996). Zbl 0856.49001, MR 1400007, 10.1007/978-1-4612-4146-1
.

Files

Files Size Format View
MathBohem_145-2020-1_9.pdf 322.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo