Previous |  Up |  Next


stationary random fields; max-semistable laws; random double sample size
We study the limiting distribution of the maximum value of a stationary bivariate real random field satisfying suitable weak mixing conditions. In the first part, when the double dimensions of the random samples have a geometric growing pattern, a max-semistable distribution is obtained. In the second part, considering the random field sampled at double random times, a mixture distribution is established for the limiting distribution of the maximum.
[1] e, Castro, L. Canto, S., Dias,: Generalized Pickands' estimators for the tail index parameter and max-semistability. Extremes 14 (2011), 429-449. DOI 10.1007/s10687-010-0123-5 | MR 2853110
[2] e, Castro, L. Canto, S., Dias,, G., Temido, M.: Looking for max-semistability: A new test for the extreme value condition. J. Statist. Plann. Inference 141 (2011), 3005-3020. DOI 10.1016/j.jspi.2011.03.020 | MR 2796007
[3] e, Castro, L. Canto, S., Dias,, G., Temido, M.: Tail inference for a law in a max-semistable domain of attraction. Pliska Stud. Math. Bulgar. 19 (2009), 83-96. MR 2547733
[4] H., Choi,: Central Limit Theory and Extremes of Random Fields. PhD Thesis, Univ. of North Carolina at Chapel Hill 2002. MR 2702684
[5] H., Ferreira,: Extremes of a random number of variables from periodic sequences. J. Statist. Plann. Inference 4 (1995), 133-141. DOI 10.1016/0378-3758(94)00082-4 | MR 1342090
[6] H., Ferreira,, L., Pereira,: How to compute the extremal index of stationary random fields. Statist. Probab. Lett. 78 (2008), 1301-1304. DOI 10.1016/j.spl.2007.11.025 | MR 2444320
[7] H., Ferreira,, L., Pereira,: Point processes of exceedances by random fields. J. Statist. Plann. Inference 142 (2012), 773-779. DOI 10.1016/j.jspi.2011.09.012 | MR 2853583
[8] A., Freitas,, J., Hüsler,, G., Temido, M.: Limit laws for maxima of a stationary random sequence with random sample size. Test 21 (2012), 116-131. DOI 10.1007/s11749-011-0238-2 | MR 2912974
[9] J., Galambos,: The Asymptotic Theory of Extreme Order Statistics. John Wiley, New York 1978. MR 0489334
[10] V., Grinevich, I.: Max-semistable limit laws under linear and power normalizations. Theory Probab. Appl., 38 (1992), 640-650. DOI 10.1137/1138064 | MR 1317998
[11] E., Hashorva,, O., Seleznjev,, Z., Tan,: Approximation of maximum of Gaussian random fields. J. Math. Anal. Appl. 457 (2018), 841-867. DOI 10.1016/j.jmaa.2017.08.040 | MR 3702733
[12] R., Leadbetter, M., G., Lindgren,, H., Rootzén,: Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, Berlin 1983. DOI 10.1007/978-1-4612-5449-2 | MR 0691492 | Zbl 0518.60021
[13] R., Leadbetter, M., H., Rootzén,: On extreme values in stationary random fields. In: Stochastic Processes and Related Topics (I. Karatzas, B. S. Rajput, and M. S. Taqqu, eds.), Birkhäuser, Boston 1998, pp. 275-285. DOI 10.1007/978-1-4612-2030-5\_15 | MR 1652377
[14] E., Pancheva,: Multivariate max-semistable distributions. Theory Probab. Appl. 18 (1992), 679-705.
[15] L., Pereira,: On the extremal behavior of a nonstationary normal random field. J. Statist. Plann. Inference 140 (2010), 3567-3576. DOI 10.1016/j.jspi.2010.04.049 | MR 2659878
[16] L., Pereira,, H., Ferreira,: Extremes of quasi-independent random fields and clustering of high values. In: Proc. 8th WSEAS International Conference on Applied Mathematics, WSEAS, Tenerife 2005, pp. 104-109. MR 2194385
[17] L., Pereira,, H., Ferreira,: Limiting crossing probabilities of random fields. J. Appl. Probab. 43 (2006), 884-891. DOI 10.1017/s0021900200002199 | MR 2274809
[18] L., Pereira,, Z., Tan,: Almost sure convergence for the maximum of nonstationary random fields. J. Theoret. Probab. 30 (2017), 996-1013. DOI 10.1007/s10959-015-0663-3 | MR 3687247
[19] A., Rényi,: On mixing sequences of sets. Acta Math. Acad. Sci. Hungar. 9 (1958), 215-228. DOI 10.1007/bf02023873 | MR 0098161
[20] Z., Tan,: An almost sure limit theorem for the maxima of smooth stationary Gaussian processes. Statist. Probab. Lett. 83 (2013), 2135-2141. DOI 10.1016/j.spl.2013.05.034 | MR 3079057
[21] Z., Tan,: Asymptotics of maxima and sums for a type of strongly dependent isotropic Gaussian random fields. Comm. Statist. Theory Methods 47 (2018), 5013-5028. DOI 10.1080/03610926.2017.1383430 | MR 3833878
[22] Z., Tan,, Y., Wang,: Almost sure asymptotics for extremes of non-stationary Gaussian random fields. Chinese Ann. Math. Ser. B 35 (2014), 125-138. DOI 10.1007/s11401-013-0810-z | MR 3160785
[23] G., Temido, M., e, Castro, L. Canto: Max-semistable laws in extremes of stationary random sequences. Theory Probab. Appl. 47 (2003), 365-374. DOI 10.1137/tprbau000047000002000365000001 | MR 2003209
Partner of
EuDML logo