Previous |  Up |  Next

Article

Title: Closed surfaces with different shapes that are indistinguishable by the SRNF (English)
Author: Klassen, Eric
Author: Michor, Peter W.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 2
Year: 2020
Pages: 107-114
Summary lang: English
.
Category: math
.
Summary: The Square Root Normal Field (SRNF), introduced by Jermyn et al. in [5], provides a way of representing immersed surfaces in $\mathbb{R}^3$, and equipping the set of these immersions with a “distance function" (to be precise, a pseudometric) that is easy to compute. Importantly, this distance function is invariant under reparametrizations (i.e., under self-diffeomorphisms of the domain surface) and under rigid motions of $\mathbb{R}^3$. Thus, it induces a distance function on the shape space of immersions, i.e., the space of immersions modulo reparametrizations and rigid motions of $\mathbb{R}^3$. In this paper, we give examples of the degeneracy of this distance function, i.e., examples of immersed surfaces (some closed and some open) that have the same SRNF, but are not the same up to reparametrization and rigid motions. We also prove that the SRNF does distinguish the shape of a standard sphere from the shape of any other immersed surface, and does distinguish between the shapes of any two embedded strictly convex surfaces. (English)
Keyword: shape space
Keyword: square root normal field
MSC: 53A05
MSC: 58D15
idZBL: Zbl 07217116
idMR: MR4115086
DOI: 10.5817/AM2020-2-107
.
Date available: 2020-05-21T08:50:14Z
Last updated: 2020-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/148136
.
Reference: [1] Aledo, J.A., Alias, L.J., Romero, A.: A New Proof of Liebmann Classical Rigidity Theorem for Surfaces in Space Forms.Rocky Mountain J. Math. 35 (6) (2005), 1811–1824. MR 2210636, 10.1216/rmjm/1181069618
Reference: [2] Bauer, M., Charon, N., Harms, P.: Inexact Elastic Shape Matching in the Square Root Normal Field Framework.Geometric Science of Information (Nielsen, F., Barbaresco, F., eds.), 2019, pp. 13–21.
Reference: [3] Hirsch, M.W.: Differential Topology.Springer-Verlag, 1996. MR 1336822
Reference: [4] Jermyn, I., Kurtek, S., Laga, H., Srivastava, A: Elastic shape analysis of three-dimensional objects.Synthesis Lectures on Computer Vision 7 (2017), 1–185. 10.2200/S00785ED1V01Y201707COV012
Reference: [5] Jermyn, I.H., Kurtek, S., Klassen, E., Srivastava, A.: Elastic shape matching of parameterized surfaces using square root normal fields.Computer Vision – ECCV 2012 (2012), 804–817.
Reference: [6] Laga, H., Qian, X., Jermyn, I., Srivastava, A.: Numerical Inversion of SRNF Maps for Elastic Shape Analysis of Genus-Zero Surfaces.IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (2016), 2451–2464. 10.1109/TPAMI.2016.2647596
Reference: [7] Michor, P.W.: Topics in differential geometry.Graduate Studies in Mathematics, vol. 93, American Mathematical Society, Providence, RI, 2008. MR 2428390, 10.1090/gsm/093
Reference: [8] Michor, P.W.: Manifolds of mappings for continuum mechanics.Geometric Continuum Mechanics (Segev, R., Epstein, M., eds.), Birkhäuser, June 2020, arxiv:1909.00445, pp. 3–75. MR 2605800
Reference: [9] Minkowski, H.: Volumen und Oberfläche.Math. Ann. 57 (4) (1903), 447–495. MR 1511220, 10.1007/BF01445180
.

Files

Files Size Format View
ArchMathRetro_056-2020-2_2.pdf 480.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo