Previous |  Up |  Next

Article

Title: Oscillation criteria for fourth order half-linear differential equations (English)
Author: Jaroš, Jaroslav
Author: Takaŝi, Kusano
Author: Tanigawa, Tomoyuki
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 2
Year: 2020
Pages: 115-125
Summary lang: English
.
Category: math
.
Summary: Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form \begin{equation*} \big (|y^{\prime \prime }|^\alpha {\rm sgn\ } y^{\prime \prime }\big )^{\prime \prime } + q(t)|y|^\alpha {\rm sgn}\ y = 0, \quad t \ge a > 0, A \end{equation*} where $\alpha > 0$ is a constant and $q(t)$ is positive continuous function on $[a,\infty )$, are given in terms of an increasing continuously differentiable function $\omega (t)$ from $[a,\infty )$ to $(0,\infty )$ which satisfies $\int _a^\infty 1/(t\omega (t))\,dt < \infty $. (English)
Keyword: half-linear differential equation
Keyword: oscillatory solutions
MSC: 34C10
idZBL: Zbl 07217117
idMR: MR4115087
DOI: 10.5817/AM2020-2-115
.
Date available: 2020-05-21T08:51:31Z
Last updated: 2020-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/148137
.
Reference: [1] Kamo, K., Usami, H.: Oscillation theorems for fourth-order quasilinear ordinary differential equations.Studia Sci. Math. Hungar. 39 (2002), 385–406. Zbl 1026.34054, MR 1956947
Reference: [2] Kamo, K., Usami, H.: Nonlinear oscillations of fourth order quasilinear ordinary differential equations.Acta Math. Hungar. 132 (3) (2011), 207–222. Zbl 1249.34111, MR 2818904, 10.1007/s10474-011-0127-x
Reference: [3] Kiguradze, I.T.: On the oscillation of solutions of the equation $d^mu/dt^m+a(t)|u|^n {\rm sign} \ u = 0$.Mat. Sb. 65 (2) (1964), 172–187. MR 0173060
Reference: [4] Kusano, T., Manojlović, J., Tanigawa, T.: Sharp oscillation criteria for a class of fourth order nonlinear differential equations.Rocky Mountain J. Math. 41 (1) (2011), 249–274. Zbl 1232.34053, MR 2845944, 10.1216/RMJ-2011-41-1-249
Reference: [5] Kusano, T., Tanigawa, T.: On the structure of positive solutions of a class of fourth order nonlinear differential equations.Ann. Mat. Pura Appl. 85 (2006), 521–536. MR 2230581
Reference: [6] Leighton, W., Nehari, Z.: On the oscillation of solutions of self-adjoint linear differential equations of the fourth order.Trans. Amer. Math. Soc. 89 (1958), 325–377. MR 0102639, 10.1090/S0002-9947-1958-0102639-X
Reference: [7] Marić, V.: Regular Variation and Differential Equations.Lecture Notes in Math. 1726 (2000), Springer Verlag, Berlin. MR 1753584, 10.1007/BFb0103952
Reference: [8] Naito, M., Wu, F.: A note on the existence and asymptotic behavior of nonoscillatory solutions of fourth order quasilinear differential equations.Acta Math. Hungar. 102 (3) (2004), 177–202. MR 2035369, 10.1023/B:AMHU.0000023215.24975.ee
Reference: [9] Naito, M., Wu, F.: On the existence of eventually positive solutions of fourth-order quasilinear differential equations.Nonlinear Anal. 57 (2) (2004), 253–363. MR 2056430, 10.1016/j.na.2004.02.012
Reference: [10] Švec, M.: Sur le compontement asymptotique des intégrales de l’equation différetielle $y^{(4)}+Q(x)y = 0$.Czechoslovak Math. J. 8 (83) (1958), 230–245. MR 0101355
Reference: [11] Swanson, C.A.: Comparison and Oscillation Theory of Linear Differential Equations.Academic Press, New York, 1968. Zbl 0191.09904, MR 0463570
Reference: [12] Tanigawa, T.: Oscillation and nonoscillation theorems for a class of fourth order quasilinear functional differential equations.Hiroshima Math. J. 33 (2003), 297–316. MR 2040899, 10.32917/hmj/1150997976
Reference: [13] Tanigawa, T.: Oscillation criteria for a class of higher order nonlinear differential equations.Mem. Differential Equations Math. Phys. 37 (2006), 137–152. MR 2223229
Reference: [14] Wu, F.: Nonoscillatory solutions of fourth order quasilinear differential equations.Funkcial. Ekvac. 45 (1) (2002), 71–88. MR 1913681
Reference: [15] Wu, F.: Existence of eventually positive solutions of fourth order quasilinear differential equations.J. Math. Anal. Appl. 389 (2012), 632–646. Zbl 1244.34054, MR 2876527, 10.1016/j.jmaa.2011.11.061
.

Files

Files Size Format View
ArchMathRetro_056-2020-2_3.pdf 522.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo