Previous |  Up |  Next

Article

Keywords:
half-linear differential equation; oscillatory solutions
Summary:
Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form \begin{equation*} \big (|y^{\prime \prime }|^\alpha {\rm sgn\ } y^{\prime \prime }\big )^{\prime \prime } + q(t)|y|^\alpha {\rm sgn}\ y = 0, \quad t \ge a > 0, A \end{equation*} where $\alpha > 0$ is a constant and $q(t)$ is positive continuous function on $[a,\infty )$, are given in terms of an increasing continuously differentiable function $\omega (t)$ from $[a,\infty )$ to $(0,\infty )$ which satisfies $\int _a^\infty 1/(t\omega (t))\,dt < \infty $.
References:
[1] Kamo, K., Usami, H.: Oscillation theorems for fourth-order quasilinear ordinary differential equations. Studia Sci. Math. Hungar. 39 (2002), 385–406. MR 1956947 | Zbl 1026.34054
[2] Kamo, K., Usami, H.: Nonlinear oscillations of fourth order quasilinear ordinary differential equations. Acta Math. Hungar. 132 (3) (2011), 207–222. DOI 10.1007/s10474-011-0127-x | MR 2818904 | Zbl 1249.34111
[3] Kiguradze, I.T.: On the oscillation of solutions of the equation $d^mu/dt^m+a(t)|u|^n {\rm sign} \ u = 0$. Mat. Sb. 65 (2) (1964), 172–187. MR 0173060
[4] Kusano, T., Manojlović, J., Tanigawa, T.: Sharp oscillation criteria for a class of fourth order nonlinear differential equations. Rocky Mountain J. Math. 41 (1) (2011), 249–274. DOI 10.1216/RMJ-2011-41-1-249 | MR 2845944 | Zbl 1232.34053
[5] Kusano, T., Tanigawa, T.: On the structure of positive solutions of a class of fourth order nonlinear differential equations. Ann. Mat. Pura Appl. 85 (2006), 521–536. MR 2230581
[6] Leighton, W., Nehari, Z.: On the oscillation of solutions of self-adjoint linear differential equations of the fourth order. Trans. Amer. Math. Soc. 89 (1958), 325–377. DOI 10.1090/S0002-9947-1958-0102639-X | MR 0102639
[7] Marić, V.: Regular Variation and Differential Equations. Lecture Notes in Math. 1726 (2000), Springer Verlag, Berlin. DOI 10.1007/BFb0103952 | MR 1753584
[8] Naito, M., Wu, F.: A note on the existence and asymptotic behavior of nonoscillatory solutions of fourth order quasilinear differential equations. Acta Math. Hungar. 102 (3) (2004), 177–202. DOI 10.1023/B:AMHU.0000023215.24975.ee | MR 2035369
[9] Naito, M., Wu, F.: On the existence of eventually positive solutions of fourth-order quasilinear differential equations. Nonlinear Anal. 57 (2) (2004), 253–363. DOI 10.1016/j.na.2004.02.012 | MR 2056430
[10] Švec, M.: Sur le compontement asymptotique des intégrales de l’equation différetielle $y^{(4)}+Q(x)y = 0$. Czechoslovak Math. J. 8 (83) (1958), 230–245. MR 0101355
[11] Swanson, C.A.: Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, New York, 1968. MR 0463570 | Zbl 0191.09904
[12] Tanigawa, T.: Oscillation and nonoscillation theorems for a class of fourth order quasilinear functional differential equations. Hiroshima Math. J. 33 (2003), 297–316. DOI 10.32917/hmj/1150997976 | MR 2040899
[13] Tanigawa, T.: Oscillation criteria for a class of higher order nonlinear differential equations. Mem. Differential Equations Math. Phys. 37 (2006), 137–152. MR 2223229
[14] Wu, F.: Nonoscillatory solutions of fourth order quasilinear differential equations. Funkcial. Ekvac. 45 (1) (2002), 71–88. MR 1913681
[15] Wu, F.: Existence of eventually positive solutions of fourth order quasilinear differential equations. J. Math. Anal. Appl. 389 (2012), 632–646. DOI 10.1016/j.jmaa.2011.11.061 | MR 2876527 | Zbl 1244.34054
Partner of
EuDML logo