Previous |  Up |  Next

Article

Title: Scatter halfspace depth: Geometric insights (English)
Author: Nagy, Stanislav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 3
Year: 2020
Pages: 287-298
Summary lang: English
.
Category: math
.
Summary: Scatter halfspace depth is a statistical tool that allows one to quantify the fitness of a candidate covariance matrix with respect to the scatter structure of a probability distribution. The depth enables simultaneous robust estimation of location and scatter, and nonparametric inference on these. A handful of remarks on the definition and the properties of the scatter halfspace depth are provided. It is argued that the currently used notion of this depth is well suited especially for symmetric random vectors. The scatter halfspace depth closely relates to an appropriate distance of matrix-generated ellipsoids from an upper level set of the (location) halfspace depth function. Several modifications and extensions to the scatter halfspace depth are considered, with their theoretical properties outlined. (English)
Keyword: elliptical distributions
Keyword: floating body
Keyword: scatter halfspace depth
Keyword: Tukey depth
MSC: 62G35
MSC: 62H20
idZBL: 07217111
idMR: MR4114253
DOI: 10.21136/AM.2020.0333-19
.
Date available: 2020-06-10T13:10:49Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148144
.
Reference: [1] Chen, M., Gao, C., Ren, Z.: Robust covariance and scatter matrix estimation under Huber's contamination model.Ann. Stat. 46 (2018), 1932-1960. Zbl 1408.62104, MR 3845006, 10.1214/17-AOS1607
Reference: [2] Dupin, C.: Applications de géométrie et de méchanique à la marine, aux ponts et chaussées, etc. pour faire suite aux développements de géométrie.Bachelier, Paris (1822), French.
Reference: [3] Fang, K.-T., Kotz, S., Ng, K.-W.: Symmetric Multivariate and Related Distributions.Monographs on Statistics and Applied Probability 36, Chapman and Hall, London (1990). Zbl 0699.62048, MR 1071174, 10.1201/9781351077040
Reference: [4] Helgason, S.: Integral Geometry and Radon Transforms.Springer, New York (2011). Zbl 1210.53002, MR 2743116, 10.1007/978-1-4419-6055-9
Reference: [5] Meyer, M., Schütt, C., Werner, E. M.: Affine invariant points.Isr. J. Math. 208 (2015), 163-192. Zbl 1343.52003, MR 3416917, 10.1007/s11856-015-1196-2
Reference: [6] Nagy, S.: Scatter halfspace depth for $K$-symmetric distributions.Stat. Probab. Lett. 149 (2019), 171-177. Zbl 1427.62041, MR 3921058, 10.1016/j.spl.2019.02.006
Reference: [7] Nagy, S.: The halfspace depth characterization problem.(to appear) in Springer Proc. Math. Stat. (2020).
Reference: [8] Nagy, S., Schütt, C., Werner, E. M.: Halfspace depth and floating body.Stat. Surv. 13 (2019), 52-118. Zbl 1428.62204, MR 3973130, 10.1214/19-ss123
Reference: [9] Paindaveine, D., Bever, G. Van: Halfspace depths for scatter, concentration and shape matrices.Ann. Stat. 46 (2018), 3276-3307. Zbl 1408.62100, MR 3852652, 10.1214/17-AOS1658
Reference: [10] Quinto, E. T.: Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform.J. Math. Anal. Appl. 95 (1983), 437-448. Zbl 0569.44005, MR 716094, 10.1016/0022-247X(83)90118-X
Reference: [11] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory.Encyclopedia of Mathematics and Its Applications 151, Cambridge University Press, Cambridge (2014). Zbl 1287.52001, MR 3155183, 10.1017/CBO9781139003858
Reference: [12] Tukey, J. W.: Mathematics and the picturing of data.Proceedings of the International Congress of Mathematicians. Vol. 2 Canadian Mathematical Society, Vancouver (1974), 523-531. Zbl 0347.62002, MR 0426989
.

Files

Files Size Format View
AplMat_65-2020-3_6.pdf 350.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo