Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
panel data; changepoint; change in means; estimation; dependence; non-stationarity; call options; non-life insurance
Summary:
The changepoint estimation problem of a common change in panel means for a very general panel data structure is considered. The observations within each panel are allowed to be generally dependent and non-stationary. Simultaneously, the panels are weakly dependent and non-stationary among each other. The follow up period can be extremely short and the changepoint magnitudes may differ across the panels accounting also for a specific situation that some magnitudes are equal to zero (thus, no jump is present in such case). We introduce a novel changepoint estimator without a boundary issue meaning that it can estimate the change close to the extremities of the studied time interval. The consistency of the nuisance-parameter-free estimator is proved regardless of the presence/absence of the change in panel means under relatively simple conditions. Empirical properties of the proposed estimator are investigated through a simulation study.
References:
[1] Bai, J.: Common breaks in means and variances for panel data. J. Econom. 157 (2010), 78-92. DOI 10.1016/j.jeconom.2009.10.020 | MR 2652280 | Zbl 06608388
[2] Baltagi, B. H., Feng, Q., Kao, C.: Estimation of heterogeneous panels with structural breaks. J. Econom. 191 (2016), 176-195. DOI 10.1016/j.jeconom.2015.03.048 | MR 3434442 | Zbl 1390.91250
[3] Bradley, R. C.: Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2 (1986), 107-144. DOI 10.1214/154957805100000104 | MR 2178042 | Zbl 1189.60077
[4] Wachter, S. De, Tzavalis, E.: Detection of structural breaks in linear dynamic panel data models. Comput. Stat. Data Anal. 56 (2012), 3020-3034. DOI 10.1016/j.csda.2012.02.025 | MR 2943878 | Zbl 1254.91002
[5] Horváth, L., Hušková, M.: Change point detection in panel data. J. Time Ser. Anal. 33 (2012), 631-648. DOI 10.1111/j.1467-9892.2012.00796.x | MR 2944843 | Zbl 1282.62181
[6] Kim, D.: Estimating a common deterministic time trend break in large panels with cross sectional dependence. J. Econom. 164 (2011), 310-330. DOI 10.1016/j.jeconom.2011.06.018 | MR 2826773 | Zbl 06616780
[7] Lin, Z., Lu, C.: Limit Theory for Mixing Dependent Random Variables. Mathematics and Its Applications 378. Kluwer Academic Publishers, Dordrecht; Science Press Beijing, New York (1996). MR 1486580 | Zbl 0889.60001
[8] Maciak, M.: Quantile LASSO with changepoints in panel data models applied to option pricing. Econom. Stat. (2020), 10 pages. DOI 10.1016/j.ecosta.2019.12.005
[9] Maciak, M., Pešta, M., Peštová, B.: Changepoint in dependent and non-stationary panels. (to appear) in Stat. Pap. (2020). DOI 10.1007/s00362-020-01180-6
[10] Pesaran, M. H.: Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 74 (2006), 967-1012. DOI 10.1111/j.1468-0262.2006.00692.x | MR 2238209 | Zbl 1152.91718
[11] Pešta, M.: Total least squares and bootstrapping with applications in calibration. Statistics 47 (2013), 966-991. DOI 10.1080/02331888.2012.658806 | MR 3175728 | Zbl 06231528
[12] Peštová, B., Pešta, M.: Testing structural changes in panel data with small fixed panel size and bootstrap. Metrika 78 (2015), 665-689 Erratum {\it 79} (2016), 237-238. DOI 10.1007/s00184-014-0522-8 | MR 3369338 | Zbl 1333.62154
[13] Peštová, B., Pešta, M.: Change point estimation in panel data without boundary issue. Risks 5 (2017), Article ID 7, 22 pages. DOI 10.3390/risks5010007
Partner of
EuDML logo