Title:
|
A note on preservation of spectra for two given operators (English) |
Author:
|
Carpintero, Carlos |
Author:
|
Gutiérrez, Alexander |
Author:
|
Rosas, Ennis |
Author:
|
Sanabria, José |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
145 |
Issue:
|
2 |
Year:
|
2020 |
Pages:
|
113-126 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the relationships between the spectra derived from Fredholm theory corresponding to two given bounded linear operators acting on the same space. The main goal of this paper is to obtain sufficient conditions for which the spectra derived from Fredholm theory and other parts of the spectra corresponding to two given operators are preserved. As an application of our results, we give conditions for which the above mentioned spectra corresponding to two multiplication operators acting on the space of functions of bounded $p$-variation in Wiener's sense coincide. Additional illustrative results are given too. (English) |
Keyword:
|
restriction of an operator |
Keyword:
|
spectral property |
Keyword:
|
semi-Fredholm spectra |
Keyword:
|
multiplication operator |
MSC:
|
47A10 |
MSC:
|
47A11 |
MSC:
|
47A53 |
MSC:
|
47A55 |
idZBL:
|
07217184 |
idMR:
|
MR4221824 |
DOI:
|
10.21136/MB.2019.0038-18 |
. |
Date available:
|
2020-06-10T13:14:01Z |
Last updated:
|
2021-04-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148148 |
. |
Reference:
|
[1] Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers.Kluwer Academic Publishers, Dordrecht (2004). Zbl 1077.47001, MR 2070395, 10.1007/1-4020-2525-4 |
Reference:
|
[2] Aiena, P.: Quasi-Fredholm operators and localized SVEP.Acta Sci. Mat. 73 (2007), 251-263. Zbl 1135.47300, MR 2339864 |
Reference:
|
[3] Aiena, P., Biondi, M. T., Carpintero, C.: On Drazin invertibility.Proc. Am. Math. Soc. 136 (2008), 2839-2848. Zbl 1142.47004, MR 2399049, 10.1090/S0002-9939-08-09138-7 |
Reference:
|
[4] Astudillo-Villaba, F. R., Castillo, R. E., Ramos-Fernández, J. C.: Multiplication operators on the spaces of functions of bounded {$p$}-variation in Wiener's sense.Real Anal. Exch. 42 (2017), 329-344. Zbl 06870333, MR 3721805, 10.14321/realanalexch.42.2.0329 |
Reference:
|
[5] Barnes, B. A.: The spectral and Fredholm theory of extensions of bounded linear operators.Proc. Am. Math. Soc. 105 (1989), 941-949. Zbl 0673.47003, MR 0955454, 10.2307/2047057 |
Reference:
|
[6] Barnes, B. A.: Restrictions of bounded linear operators: Closed range.Proc. Am. Math. Soc. 135 (2007), 1735-1740. Zbl 1124.47002, MR 2286083, 10.1090/S0002-9939-06-08624-2 |
Reference:
|
[7] Berkani, M.: On a class of quasi-Fredholm operators.Integral Equations Oper. Theory 34 (1999), 244-249. Zbl 0939.47010, MR 1694711, 10.1007/BF01236475 |
Reference:
|
[8] Berkani, M., Sarih, M.: On semi B-Fredholm operators.Glasg. Math. J. 43 (2001), 457-465. Zbl 0995.47008, MR 1878588, 10.1017/S0017089501030075 |
Reference:
|
[9] Carpintero, C., Muñoz, D., Rosas, E., Sanabria, J., García, O.: Weyl type theorems and restrictions.Mediterr. J. Math. 11 (2014), 1215-1228. Zbl 1331.47005, MR 3268818, 10.1007/s00009-013-0369-7 |
Reference:
|
[10] Finch, J. K.: The single valued extension property on a Banach space.Pac. J. Math. 58 (1975), 61-69. Zbl 0315.47002, MR 0374985, 10.2140/pjm.1975.58.61 |
Reference:
|
[11] Heuser, H. G.: Functional Analysis.A Wiley-Interscience Publication. John Wiley & Sons, Chichester (1982). Zbl 0465.47001, MR 0640429 |
. |