Previous |  Up |  Next

Article

Title: A note on preservation of spectra for two given operators (English)
Author: Carpintero, Carlos
Author: Gutiérrez, Alexander
Author: Rosas, Ennis
Author: Sanabria, José
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 2
Year: 2020
Pages: 113-126
Summary lang: English
.
Category: math
.
Summary: We study the relationships between the spectra derived from Fredholm theory corresponding to two given bounded linear operators acting on the same space. The main goal of this paper is to obtain sufficient conditions for which the spectra derived from Fredholm theory and other parts of the spectra corresponding to two given operators are preserved. As an application of our results, we give conditions for which the above mentioned spectra corresponding to two multiplication operators acting on the space of functions of bounded $p$-variation in Wiener's sense coincide. Additional illustrative results are given too. (English)
Keyword: restriction of an operator
Keyword: spectral property
Keyword: semi-Fredholm spectra
Keyword: multiplication operator
MSC: 47A10
MSC: 47A11
MSC: 47A53
MSC: 47A55
idZBL: 07217184
idMR: MR4221824
DOI: 10.21136/MB.2019.0038-18
.
Date available: 2020-06-10T13:14:01Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148148
.
Reference: [1] Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers.Kluwer Academic Publishers, Dordrecht (2004). Zbl 1077.47001, MR 2070395, 10.1007/1-4020-2525-4
Reference: [2] Aiena, P.: Quasi-Fredholm operators and localized SVEP.Acta Sci. Mat. 73 (2007), 251-263. Zbl 1135.47300, MR 2339864
Reference: [3] Aiena, P., Biondi, M. T., Carpintero, C.: On Drazin invertibility.Proc. Am. Math. Soc. 136 (2008), 2839-2848. Zbl 1142.47004, MR 2399049, 10.1090/S0002-9939-08-09138-7
Reference: [4] Astudillo-Villaba, F. R., Castillo, R. E., Ramos-Fernández, J. C.: Multiplication operators on the spaces of functions of bounded {$p$}-variation in Wiener's sense.Real Anal. Exch. 42 (2017), 329-344. Zbl 06870333, MR 3721805, 10.14321/realanalexch.42.2.0329
Reference: [5] Barnes, B. A.: The spectral and Fredholm theory of extensions of bounded linear operators.Proc. Am. Math. Soc. 105 (1989), 941-949. Zbl 0673.47003, MR 0955454, 10.2307/2047057
Reference: [6] Barnes, B. A.: Restrictions of bounded linear operators: Closed range.Proc. Am. Math. Soc. 135 (2007), 1735-1740. Zbl 1124.47002, MR 2286083, 10.1090/S0002-9939-06-08624-2
Reference: [7] Berkani, M.: On a class of quasi-Fredholm operators.Integral Equations Oper. Theory 34 (1999), 244-249. Zbl 0939.47010, MR 1694711, 10.1007/BF01236475
Reference: [8] Berkani, M., Sarih, M.: On semi B-Fredholm operators.Glasg. Math. J. 43 (2001), 457-465. Zbl 0995.47008, MR 1878588, 10.1017/S0017089501030075
Reference: [9] Carpintero, C., Muñoz, D., Rosas, E., Sanabria, J., García, O.: Weyl type theorems and restrictions.Mediterr. J. Math. 11 (2014), 1215-1228. Zbl 1331.47005, MR 3268818, 10.1007/s00009-013-0369-7
Reference: [10] Finch, J. K.: The single valued extension property on a Banach space.Pac. J. Math. 58 (1975), 61-69. Zbl 0315.47002, MR 0374985, 10.2140/pjm.1975.58.61
Reference: [11] Heuser, H. G.: Functional Analysis.A Wiley-Interscience Publication. John Wiley & Sons, Chichester (1982). Zbl 0465.47001, MR 0640429
.

Files

Files Size Format View
MathBohem_145-2020-2_1.pdf 308.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo