[1] Aassila, M., Cavalcanti, M. M., Soriano, J. A.: 
Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain. SIAM J. Control Optim. 38 (2000), 1581-1602. 
DOI 10.1137/S0363012998344981 | 
MR 1766431 | 
Zbl 0985.35008[2] Achouri, Z., Amroun, N. E., Benaissa, A.: 
The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type. Math. Methods Appl. Sci. 40 (2017), 3837-3854. 
DOI 10.1002/mma.4267 | 
MR 3668815 | 
Zbl 1366.93484[6] Coleman, B. D., Dill, E. H.: 
On the thermodynamics of electromagnetic fields in materials with memory. Arch. Rational Mech. Anal. 41 (1971), 132-162. 
DOI 10.1007/BF00281371 | 
MR 0347245[7] Coleman, B. D., Dill, E. H.: 
Thermodynamic restriction on the constitutive equations of electromagnetic theory. Zeit. Angew. Math. Phys. 22 (1971), 691-702. 
DOI 10.1007/BF01587765 | 
Zbl 0218.35072[15] Komornik, V., Zuazua, E.: 
A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. (9) 69 (1990), 33-54. 
MR 1054123 | 
Zbl 0636.93064[16] Lions, J.-L.: 
Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod; Gauthier-Villars, Paris (1969), French. 
MR 0259693 | 
Zbl 0189.40603[17] Matignon, M., Audounet, J., Montseny, G.: Energy decay rate for wave equations with damping of fractional order. Fourth Int. Conf. Mathematical and Numerical Aspects of Wave Propagation Phenomena (1998), 638-640.
[18] Matos, L. P. V., Dmitriev, V.: 
On the stability of energy and harmonic waves in conductors with memory. SBMO/IEEE MTT-S Int. Microwave and Optoelectronics Conf. (IMOC) IEEE, Belem (2009), 528-532. 
DOI 10.1109/IMOC.2009.5427530[22] Rivera, J. E. Muñoz, Naso, M. G., Vuk, E.: 
Asymptotic behaviour of the energy for electromagnetic systems with memory. Math. Methods Appl. Sci. 27 (2004), 819-841. 
DOI 10.1002/mma.473 | 
MR 2055321 | 
Zbl 1054.35103[23] Nicaise, S., Pignotti, C.: 
Stabilization of the wave equation with variable coefficients and boundary condition of memory type. Asymptotic Anal. 50 (2006), 31-67. 
MR 2286936 | 
Zbl 1139.35373[24] Park, J. Y., Park, S. H.: 
Decay rate estimates for wave equations of memory type with acoustic boundary conditions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 993-998. 
DOI 10.1016/j.na.2010.09.057 | 
MR 2738648 | 
Zbl 1202.35032[25] Pata, V., Zucchi, A.: 
Attractors for a damped hyperbolic equation with linear memory. Adv. Math. Sci. Appl. 11 (2001), 505-529. 
MR 1907454 | 
Zbl 0999.35014[27] Yassine, H.: 
Stability of global bounded solutions to a nonautonomous nonlinear second order integro-differential equation. Z. Anal. Anwend. 37 (2018), 83-99. 
DOI 10.4171/ZAA/1604 | 
MR 3746499 | 
Zbl 06852543[28] Zacher, R.: 
Convergence to equilibrium for second order differential equations with weak damping of memory type. Adv. Differ. Equ. 14 (2009), 749-770. 
MR 2527692 | 
Zbl 1190.45007