Previous |  Up |  Next

Article

Title: On real flag manifolds with cup-length equal to its dimension (English)
Author: Radovanović, Marko
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 2
Year: 2020
Pages: 299-310
Summary lang: English
.
Category: math
.
Summary: We prove that for any positive integers $n_1,n_2,\ldots ,n_k$ there exists a real flag manifold $F(1,\ldots ,1,n_1,n_2,\ldots ,n_k)$ with cup-length equal to its dimension. Additionally, we give a necessary condition that an arbitrary real flag manifold needs to satisfy in order to have cup-length equal to its dimension. (English)
Keyword: cup-length
Keyword: flag manifold
Keyword: Lyusternik-Shnirel'man category
MSC: 14M15
MSC: 55M30
MSC: 57N65
idZBL: 07217136
idMR: MR4111844
DOI: 10.21136/CMJ.2019.0283-18
.
Date available: 2020-06-17T12:29:50Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148229
.
Reference: [1] Berstein, I.: On the Lusternik-Schnirelmann category of Grassmannians.Math. Proc. Camb. Philos. Soc. 79 (1976), 129-134. Zbl 0315.55011, MR 0400212, 10.1017/S0305004100052142
Reference: [2] Borel, A.: La cohomologie mod 2 de certains espaces homogènes.Comment. Math. Helv. 27 (1953), 165-197 French. Zbl 0052.40301, MR 0057541, 10.1007/BF02564561
Reference: [3] Hiller, H. L.: On the cohomology of real Grassmanians.Trans. Am. Math. Soc. 257 (1980), 521-533. Zbl 0462.57021, MR 0552272, 10.2307/1998310
Reference: [4] Horanská, L'., Korbaš, J.: On cup products in some manifolds.Bull. Belg. Math. Soc. -- Simon Stevin 7 (2000), 21-28. Zbl 0956.55010, MR 1741743, 10.36045/bbms/1103055716
Reference: [5] Korbaš, J., Lörinc, J.: The $\mathbb Z_2$-cohomology cup-length of real flag manifolds.Fundam. Math. 178 (2003), 143-158. Zbl 1052.55006, MR 2029922, 10.4064/fm178-2-4
Reference: [6] Petrović, Z. Z., Prvulović, B. I., Radovanović, M.: On maximality of the cup-length of flag manifolds.Acta Math. Hung. 149 (2016), 448-461. Zbl 1389.57006, MR 3518647, 10.1007/s10474-016-0625-y
Reference: [7] Petrović, Z. Z., Prvulović, B. I., Radovanović, M.: Gröbner bases for (partial) flag manifolds.(to appear) in J. Symb. Comput. MR 4109710, 10.1016/j.jsc.2019.06.008
Reference: [8] Radovanović, M.: Gröbner bases for some flag manifolds and applications.Math. Slovaca 66 (2016), 1065-1082. Zbl 1399.13029, MR 3602604, 10.1515/ms-2016-0204
Reference: [9] Radovanović, M.: On the $\Bbb Z_2$-cohomology cup-length of some real flag manifolds.Filomat 30 (2016), 1577-1590. Zbl 06749816, MR 3530103, 10.2298/FIL1606577R
Reference: [10] Stong, R. E.: Cup products in Grassmannians.Topology Appl. 13 (1982), 103-113. Zbl 0469.55005, MR 0637432, 10.1016/0166-8641(82)90012-8
.

Files

Files Size Format View
CzechMathJ_70-2020-2_1.pdf 300.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo