Previous |  Up |  Next

Article

Title: Nonexistence of entire positive solution for a conformal $k$-Hessian inequality (English)
Author: Jiang, Feida
Author: Cui, Saihua
Author: Li, Gang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 2
Year: 2020
Pages: 311-322
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the nonexistence of entire positive solution for a conformal $k$-Hessian inequality in $\mathbb {R}^n$ via the method of proof by contradiction. (English)
Keyword: conformal Hessian inequality
Keyword: entire positive solution
MSC: 35B08
MSC: 35B09
MSC: 35J60
idZBL: 07217137
idMR: MR4111845
DOI: 10.21136/CMJ.2019.0289-18
.
Date available: 2020-06-17T12:30:21Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148231
.
Reference: [1] Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire.J. Math. Pur. Appl., IX. Sér. 55 (1976), 269-296 French. Zbl 0336.53033, MR 0431287
Reference: [2] Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev.J. Diff. Geom. 11 (1976), 573-598 French. Zbl 0371.46011, MR 0448404, 10.4310/jdg/1214433725
Reference: [3] Bao, J., Ji, X., Li, H.: Existence and nonexistence theorem for entire subsolutions of $k$-Yamabe type equations.J. Differ. Equations 253 (2012), 2140-2160. Zbl 1260.35044, MR 2946967, 10.1016/j.jde.2012.06.018
Reference: [4] Brezis, H.: Semilinear equations in $\mathbb{R}^N$ without condition at infinity.Appl. Math. Optimization 12 (1984), 271-282. Zbl 0562.35035, MR 0768633, 10.1007/BF01449045
Reference: [5] Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth.Commun. Pure Appl. Math. 42 (1989), 271-297. Zbl 0702.35085, MR 0982351, 10.1002/cpa.3160420304
Reference: [6] Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations III: Functions of the eigenvalues of the Hessian.Acta Math. 155 (1985), 261-301. Zbl 0654.35031, MR 0806416, 10.1007/BF02392544
Reference: [7] Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations.Commun. Pure Appl. Math. 34 (1981), 525-598. Zbl 0465.35003, MR 0615628, 10.1002/cpa.3160340406
Reference: [8] Ji, X., Bao, J.: Necessary and sufficient conditions on solvability for Hessian inequalities.Proc. Am. Math. Soc. 138 (2010), 175-188. Zbl 1180.35234, MR 2550182, 10.1090/S0002-9939-09-10032-1
Reference: [9] Jiang, F., Trudinger, N. S.: Oblique boundary value problems for augmented Hessian equations I.Bull. Math. Sci. 8 (2018), 353-411. Zbl 1411.35116, MR 3826768, 10.1007/s13373-018-0124-2
Reference: [10] Jiang, F., Trudinger, N. S., Yang, X.-P.: On the Dirichlet problem for a class of augmented Hessian equations.J. Differ. Equations 258 (2015), 1548-1576. Zbl 1309.35027, MR 3295592, 10.1016/j.jde.2014.11.005
Reference: [11] Jin, Q., Li, Y., Xu, H.: Nonexistence of positive solutions for some fully nonlinear elliptic equations.Methods Appl. Anal. 12 (2005), 441-449. Zbl 1143.35322, MR 2258318, 10.4310/MAA.2005.v12.n4.a5
Reference: [12] Keller, J. B.: On solutions of $\Delta u=f(u)$.Commun. Pure Appl. Math. 10 (1957), 503-510. Zbl 0090.31801, MR 0091407, 10.1002/cpa.3160100402
Reference: [13] Li, A., Li, Y. Y.: On some conformally invariant fully nonlinear equations II: Liouville, Harnack and Yamabe.Acta Math. 195 (2005), 117-154. Zbl 1216.35038, MR 2233687, 10.1007/BF02588052
Reference: [14] Lieberman, G. M.: Second Order Parabolic Differential Equations.World Scientific Publishing, Singapore (1996). Zbl 0884.35001, MR 1465184, 10.1142/3302
Reference: [15] Loewner, C., Nirenberg, L.: Partial differential equations invariant under conformal or projective transformations.Contributions to Analysis: A Collection of Papers Dedicated to Lipman Bers Academic Press, New York (1974), 245-272. Zbl 0298.35018, MR 0358078
Reference: [16] Osserman, R.: On the inequality $\Delta u\ge f(u)$.Pac. J. Math. 7 (1957), 1641-1647. Zbl 0083.09402, MR 0098239, 10.2140/pjm.1957.7.1641
Reference: [17] Ou, Q.: Nonexistence results for Hessian inequality.Methods Appl. Anal. 17 (2010), 213-224. Zbl 1211.35293, MR 2763578, 10.4310/MAA.2010.v17.n2.a5
Reference: [18] Ou, Q.: Singularities and Liouville theorems for some special conformal Hessian equations.Pac. J. Math. 266 (2013), 117-128. Zbl 1284.35179, MR 3105779, 10.2140/pjm.2013.266.117
Reference: [19] Ou, Q.: A note on nonexistence of conformal Hessian inequalities.Adv. Math., Beijing 46 (2017), 154-158. Zbl 1389.26062, MR 3627002
Reference: [20] Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature.J. Differ. Geom. 20 (1984), 479-495. Zbl 0576.53028, MR 0788292, 10.4310/jdg/1214439291
Reference: [21] Sheng, W., Trudinger, N. S., Wang, X.-J.: The $k$-Yamabe problem.Surv. Differ. Geom. 17 (2012), 427-457. Zbl 1382.53013, MR 3076067, 10.4310/SDG.2012.v17.n1.a10
Reference: [22] Trudinger, N. S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 265-274. Zbl 0159.23801, MR 0240748
Reference: [23] Trudinger, N. S.: Recent developments in elliptic partial differential equations of Monge-Ampère type.International Congress of Mathematicians. Vol. III European Mathematical Society, Zürich (2006), 291-302. Zbl 1130.35058, MR 2275682, 10.4171/022-3/15
Reference: [24] Viaclovsky, J. A.: Conformal geometry, contact geometry, and the calculus of variations.Duke Math. J. 101 (2000), 283-316. Zbl 0990.53035, MR 1738176, 10.1215/S0012-7094-00-10127-5
Reference: [25] Yamabe, H.: On a deformation of Riemannian structures on compact manifolds.Osaka Math. J. 12 (1960), 21-37. Zbl 0096.37201, MR 0125546
.

Files

Files Size Format View
CzechMathJ_70-2020-2_2.pdf 292.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo