Previous |  Up |  Next

Article

Title: Gaussian and Prüfer conditions in bi-amalgamated algebras (English)
Author: Mahdou, Najib
Author: Moutui, Moutu Abdou Salam
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 2
Year: 2020
Pages: 381-391
Summary lang: English
.
Category: math
.
Summary: Let $f\colon A\rightarrow B$ and $g\colon A\rightarrow C$ be two ring homomorphisms and let $J$ and $J'$ be ideals of $B$ and $C$, respectively, such that $f^{-1}(J)=g^{-1}(J')$. In this paper, we investigate the transfer of the notions of Gaussian and Prüfer rings to the bi-amalgamation of $A$ with $(B,C)$ along $(J,J')$ with respect to $(f,g)$ (denoted by $A\bowtie ^{f,g}(J,J')),$ introduced and studied by S. Kabbaj, K. Louartiti and M. Tamekkante in 2013. Our results recover well known results on amalgamations in C. A. Finocchiaro (2014) and generate new original examples of rings possessing these properties. (English)
Keyword: bi-amalgamation
Keyword: amalgamated algebra
Keyword: Gaussian ring
Keyword: Prüfer ring
MSC: 13A15
MSC: 13C10
MSC: 13C11
MSC: 13D05
MSC: 13E05
MSC: 13F05
MSC: 13F20
MSC: 13F30
MSC: 16D40
MSC: 16E10
MSC: 16E60
idZBL: 07217141
idMR: MR4111849
DOI: 10.21136/CMJ.2019.0335-18
.
Date available: 2020-06-17T12:32:19Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148235
.
Reference: [1] Abuhlail, J., Jarrar, M., Kabbaj, S.: Commutative rings in which every finitely generated ideal is quasi-projective.J. Pure Appl. Algebra 215 (2011), 2504-2511. Zbl 1226.13014, MR 2793953, 10.1016/j.jpaa.2011.02.008
Reference: [2] Bakkari, C., Kabbaj, S., Mahdou, N.: Trivial extensions defined by Prüfer conditions.J. Pure Appl. Algebra 214 (2010), 53-60. Zbl 1175.13008, MR 2561766, /10.1016/j.jpaa.2009.04.011
Reference: [3] Bazzoni, S., Glaz, S.: Prüfer rings.Multiplicative Ideal Theory in Commutative Algebra J. W. Brewer et al. Springer, New York (2006), 55-72. Zbl 1115.13024, MR 2265801, 10.1007/978-0-387-36717-0_4
Reference: [4] Bazzoni, S., Glaz, S.: Gaussian properties of total rings of quotients.J. Algebra 310 (2007), 180-193. Zbl 1118.13020, MR 2307788, 10.1016/j.jalgebra.2007.01.004
Reference: [5] Boisen, M. B., Sheldon, P. B.: CPI-extension: Overrings of integral domains with special prime spectrums.Can. J. Math. 29 (1977), 722-737. Zbl 0363.13002, MR 0447205, 10.4153/CJM-1977-076-6
Reference: [6] Butts, H. S., Smith, W.: Prüfer rings.Math. Z. 95 (1967), 196-211. Zbl 0153.37003, MR 0209271, 10.1007/BF01111523
Reference: [7] Campanini, F., Finocchiaro, C. A.: Bi-amalgamated constructions.J. Algebra Appl. 18 (2019), Article ID 1950148, 16 pages. Zbl 07096463, MR 3977809, 10.1142/S0219498819501482
Reference: [8] Chhiti, M., Jarrar, M., Kabbaj, S., Mahdou, N.: Prüfer conditions in an amalgamated duplication of a ring along an ideal.Commun. Algebra 43 (2015), 249-261. Zbl 1327.13063, MR 3240418, 10.1080/00927872.2014.897575
Reference: [9] D'Anna, M.: A construction of Gorenstein rings.J. Algebra 306 (2006), 507-519. Zbl 1120.13022, MR 2271349, 10.1016/j.jalgebra.2005.12.023
Reference: [10] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Amalgamated algebras along an ideal.Commutative Algebra and its Applications M. Fontana et al. Walter de Gruyter, Berlin (2009), 155-172. Zbl 1177.13043, MR 2606283, 10.1515/9783110213188.155
Reference: [11] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal.J. Pure Appl. Algebra 214 (2010), 1633-1641. Zbl 1191.13006, MR 2593689, 10.1016/j.jpaa.2009.12.008
Reference: [12] D'Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: The basic properties.J. Algebra Appl. 6 (2007), 443-459. Zbl 1126.13002, MR 2337762, 10.1142/S0219498807002326
Reference: [13] Finocchiaro, C. A.: Prüfer-like conditions on an amalgamated algebra along an ideal.Houston J. Math. 40 (2014), 63-79. Zbl 1297.13002, MR 3210554
Reference: [14] Fuchs, L.: Über die Ideale arithmetischer Ringe.Comment. Math. Helv. 23 (1949), 334-341 German. Zbl 0040.30103, MR 0032583, 10.1007/BF02565607
Reference: [15] Glaz, S.: Prüfer conditions in rings with zero-divisors.Arithmetical Properties of Commutative Rings and Monoids S. T. Chapman Lecture Notes in Pure Applied Mathematics 241, Chapman & Hall/CRC, Boca Raton (2005), 272-281. Zbl 1107.13023, MR 2140700, 10.1201/9781420028249.ch17
Reference: [16] Glaz, S.: The weak global dimensions of Gaussian rings.Proc. Am. Math. Soc. 133 (2005), 2507-2513. Zbl 1077.13009, MR 2146192, 10.1090/S0002-9939-05-08093-7
Reference: [17] Griffin, M.: Prüfer rings with zero divisors.J. Reine Angew. Math. 239-240 (1969), 55-67. Zbl 0185.09801, MR 0255527, 10.1515/crll.1969.239-240.55
Reference: [18] Kabbaj, S., Louartiti, K., Tamekkante, M.: Bi-amalgamated algebras along ideals.J. Commut. Algebra 9 (2017), 65-87. Zbl 1390.13008, MR 3631827, 10.1216/JCA-2017-9-1-65
Reference: [19] Kabbaj, S., Mahdou, N., Moutui, M. A. S.: Bi-amalgamations subject to the arithmetical property.J. Algebra Appl. 16 (2017), Article ID 1750030, 11 pages. Zbl 1390.13057, MR 3608417, 10.1142/S021949881750030X
Reference: [20] Koehler, A.: Rings for which every cyclic module is quasi-projective.Math. Ann. 189 (1970), 311-316. Zbl 0198.05602, MR 0280536, 10.1007/BF01359713
Reference: [21] Krull, W.: Beiträge zur Arithmetik kommutativer Integritätsbereiche.Math. Z. 41 (1936), 545-577 German. Zbl 0015.00203, MR 1545640, 10.1007/BF01180441
Reference: [22] Loper, K. A., Roitman, M.: The content of a Gaussian polynomial is invertible.Proc. Am. Math. Soc. 133 (2005), 1267-1271. Zbl 1137.13301, MR 2111931, 10.1090/S0002-9939-04-07826-8
Reference: [23] Lucas, T. G.: Gaussian polynomials and invertibility.Proc. Am. Math. Soc. 133 (2005), 1881-1886. Zbl 1154.13301, MR 2137851, 10.1090/S0002-9939-05-07977-3
Reference: [24] Prüfer, H.: Untersuchungen über Teilbarkeitseigenschaften in Körpern.J. Reine Angew. Math. 168 (1932), 1-36 German. Zbl 0004.34001, MR 1581355, 10.1515/crll.1932.168.1
Reference: [25] Tsang, H.: Gauss's Lemma, Ph.D. Thesis.University of Chicago, Chicago (1965). MR 2611536
.

Files

Files Size Format View
CzechMathJ_70-2020-2_6.pdf 307.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo