Title:
|
One-sided Gorenstein subcategories (English) |
Author:
|
Song, Weiling |
Author:
|
Zhao, Tiwei |
Author:
|
Huang, Zhaoyong |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
70 |
Issue:
|
2 |
Year:
|
2020 |
Pages:
|
483-504 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We introduce the right (left) Gorenstein subcategory relative to an additive subcategory $\mathscr {C}$ of an abelian category $\mathscr {A}$, and prove that the right Gorenstein subcategory $r\mathcal {G}(\mathscr {C})$ is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When $\mathscr {C}$ is self-orthogonal, we give a characterization for objects in $r\mathcal {G}(\mathscr {C})$, and prove that any object in $\mathscr {A}$ with finite $r\mathcal {G}(\mathscr {C})$-projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in $\mathscr {A}$ with finite $\mathscr {C}$-projective dimension to an object in $r\mathcal {G}(\mathscr {C})$. As an application, we obtain a weak Auslander-Buchweitz context related to the kernel of a hereditary cotorsion pair in $\mathscr {A}$ having enough injectives. (English) |
Keyword:
|
right Gorenstein subcategory |
Keyword:
|
self-orthogonal subcategory |
Keyword:
|
relative projective dimension |
Keyword:
|
cotorsion pair |
Keyword:
|
kernel |
Keyword:
|
(weak) Auslander-Buchweitz context |
MSC:
|
16E10 |
MSC:
|
18G10 |
MSC:
|
18G25 |
idZBL:
|
07217147 |
idMR:
|
MR4111855 |
DOI:
|
10.21136/CMJ.2019.0385-18 |
. |
Date available:
|
2020-06-17T12:35:30Z |
Last updated:
|
2022-07-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148241 |
. |
Reference:
|
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory.London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006). Zbl 1092.16001, MR 2197389, 10.1017/CBO9780511614309 |
Reference:
|
[2] Auslander, M., Bridger, M.: Stable module theory.Mem. Am. Math. Soc. 94 (1969), 146 pages. Zbl 0204.36402, MR 0269685, 10.1090/memo/0094 |
Reference:
|
[3] Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen-Macaulay approximations.Mém. Soc. Math. Fr., Nouv. Sér. 38 (1989), 5-37. Zbl 0697.13005, MR 1044344, 10.24033/msmf.339 |
Reference:
|
[4] Avramov, L. L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension.Proc. Lond. Math. Soc., III. Ser. 85 (2002), 393-440. Zbl 1047.16002, MR 1912056, 10.1112/S0024611502013527 |
Reference:
|
[5] Cartan, H., Eilenberg, S.: Homological Algebra.Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1999). Zbl 0933.18001, MR 1731415, 10.1515/9781400883844 |
Reference:
|
[6] Christensen, L. W.: Gorenstein Dimensions.Lecture Notes in Mathematics 1747, Springer, Berlin (2000). Zbl 0965.13010, MR 1799866, 10.1007/BFb0103980 |
Reference:
|
[7] Christensen, L. W., Foxby, H.-B., Holm, H.: Beyond totally reflexive modules and back. A survey on Gorenstein dimensions.Commutative Algebra: Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 101-143. Zbl 1225.13019, MR 2762509, 10.1007/978-1-4419-6990-3_5 |
Reference:
|
[8] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions---a functorial description with applications.J. Algebra 302 (2006), 231-279. Zbl 1104.13008, MR 2236602, 10.1016/j.jalgebra.2005.12.007 |
Reference:
|
[9] Christensen, L. W., Iyengar, S.: Gorenstein dimension of modules over homomorphisms.J. Pure Appl. Algebra 208 (2007), 177-188. Zbl 1105.13014, MR 2269838, 10.1016/j.jpaa.2005.12.005 |
Reference:
|
[10] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules.Math. Z. 220 (1995), 611-633. Zbl 0845.16005, MR 1363858, 10.1007/BF02572634 |
Reference:
|
[11] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.de Gruyter Expositions in Mathematics 30, de Gruyter, Berlin (2000). Zbl 0952.13001, MR 2857612, 10.1515/9783110803662 |
Reference:
|
[12] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: Covers and envelopes by $V$-Gorenstein modules.Commun. Algebra 33 (2005), 4705-4717. Zbl 1087.16002, MR 2188336, 10.1080/00927870500328766 |
Reference:
|
[13] Enochs, E. E., Oyonarte, L.: Covers, Envelopes and Cotorsion Theories.Nova Science Publishers, New York (2002). |
Reference:
|
[14] Geng, Y., Ding, N.: $\mathcal{W}$-Gorenstein modules.J. Algebra 325 (2011), 132-146. Zbl 1216.18015, MR 2745532, 10.1016/j.jalgebra.2010.09.040 |
Reference:
|
[15] Hashimoto, M.: Auslander-Buchweitz Approximations of Equivariant Modules.London Mathematical Society Lecture Note Series 282, Cambridge University Press, Cambridge (2000). Zbl 0993.13007, MR 1797672, 10.1017/CBO9780511565762 |
Reference:
|
[16] Holm, H.: Gorenstein homological dimensions.J. Pure Appl. Algebra 189 (2004), 167-193. Zbl 1050.16003, MR 2038564, 10.1016/j.jpaa.2003.11.007 |
Reference:
|
[17] Huang, Z.: Proper resolutions and Gorenstein categories.J. Algebra 393 (2013), 142-169. Zbl 1291.18022, MR 3090064, 10.1016/j.jalgebra.2013.07.008 |
Reference:
|
[18] Liu, Z., Huang, Z., Xu, A.: Gorenstein projective dimension relative to a semidualizing bimodule.Commun. Algebra 41 (2013), 1-18. Zbl 1287.16015, MR 3010518, 10.1080/00927872.2011.602782 |
Reference:
|
[19] Rotman, J. J.: An Introduction to Homological Algebra.Universitext, Springer, New York (2009). Zbl 1157.18001, MR 2455920, 10.1007/b98977 |
Reference:
|
[20] Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories.J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. Zbl 1140.18010, MR 2400403, 10.1112/jlms/jdm124 |
Reference:
|
[21] Tang, X., Huang, Z.: Homological aspects of the dual Auslander transpose.Forum Math. 27 (2015), 3717-3743. Zbl 1405.16004, MR 3420357, 10.1515/forum-2013-0196 |
Reference:
|
[22] Tang, X., Huang, Z.: Homological aspects of the adjoint cotranspose.Colloq. Math. 150 (2017), 293-311. Zbl 1397.18032, MR 3719463, 10.4064/cm7121-12-2016 |
. |