Previous |  Up |  Next

Article

Title: A universal bound for lower Neumann eigenvalues of the Laplacian (English)
Author: Lu, Wei
Author: Mao, Jing
Author: Wu, Chuanxi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 2
Year: 2020
Pages: 473-482
Summary lang: English
.
Category: math
.
Summary: Let $M$ be an $n$-dimensional ($n\ge 2$) simply connected Hadamard manifold. If the radial Ricci curvature of $M$ is bounded from below by $(n-1)k(t)$ with respect to some point $p\in M$, where $t=d(\cdot ,p)$ is the Riemannian distance on $M$ to $p$, $k(t)$ is a nonpositive continuous function on $(0,\infty )$, then the first $n$ nonzero Neumann eigenvalues of the Laplacian on the geodesic ball $B(p,l)$, with center $p$ and radius $0<l<\infty $, satisfy $$ \frac {1}{\mu _1}+\frac {1}{\mu _2}+\cdots +\frac {1}{\mu _n}\ge \frac {l^{n+2}}{(n+2)\int _{0}^{l}f^{n-1}(t){\rm d}t}, $$ where $f(t)$ is the solution to $$ \begin {cases} f''(t)+k(t)f(t)=0 \quad \text {on} \ (0,\infty ),\\ f(0)=0, \ f'(0)=1. \end {cases} $$ (English)
Keyword: Hadamard manifold
Keyword: Neumann eigenvalue
Keyword: radial Ricci curvature
MSC: 35P15
MSC: 53C20
idZBL: 07217146
idMR: MR4111854
DOI: 10.21136/CMJ.2019.0363-18
.
Date available: 2020-06-17T12:35:03Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148240
.
Reference: [1] Ashbaugh, M. S., Benguria, R. D.: Universal bounds for the low eigenvalues of Neumann Laplacians in $n$ dimensions.SIAM J. Math. Anal. 24 (1993), 557-570. Zbl 0796.35122, MR 1215424, 10.1137/0524034
Reference: [2] Ashbaugh, M. S., Benguria, R. D., Laugesen, R. S., Weidl, T.: Low eigenvalues of Laplace and Schrödinger operators.Oberwolfach Rep. 6 (2009), 355-428. Zbl 1177.35003, MR 2604061, 10.4171/OWR/2009/06
Reference: [3] Bandle, C.: Isoperimetric inequality for some eigenvalues of an inhomogeneous, free membrane.SIAM J. Appl. Math. 22 (1972), 142-147. Zbl 0237.35069, MR 0313648, 10.1137/0122016
Reference: [4] Bandle, C.: Isoperimetric Inequalities and Applications.Monographs and Studies in Mathematics 7, Pitman, Boston (1980). Zbl 0436.35063, MR 0572958
Reference: [5] Brouwer, L. E. J.: Über Abbildung von Mannigfaltigkeiten.Math. Ann. 71 (1911), 97-115 German \99999JFM99999 42.0417.01. MR 1511644, 10.1007/BF01456931
Reference: [6] Chavel, I.: Eigenvalues in Riemannian Geometry.Pure and Applied Mathematics 115, Academic Press, Orlando (1984). Zbl 0551.53001, MR 0768584, 10.1016/S0079-8169(13)62888-3
Reference: [7] Enache, C., Philippin, G. A.: Some inequalities involving eigenvalues of the Neumann Laplacian.Math. Methods Appl. Sci. 36 (2013), 2145-2153. Zbl 1276.35121, MR 3124783, 10.1002/mma.2743
Reference: [8] Freitas, P., Mao, J., Salavessa, I.: Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds.Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. Zbl 1302.35275, MR 3268868, 10.1007/s00526-013-0692-7
Reference: [9] Girouard, A., Nadirashvili, N., Polterovich, I.: Maximization of the second positive Neumann eigenvalue for planar domains.J. Differ. Geom. 83 (2009), 637-662. Zbl 1186.35120, MR 2581359, 10.4310/jdg/1264601037
Reference: [10] Mao, J.: Eigenvalue inequalities for the $p$-Laplacian on a Riemannian manifold and estimates for the heat kernel.J. Math. Pures Appl. 101 (2014), 372-393. Zbl 1285.58013, MR 3168915, 10.1016/j.matpur.2013.06.006
Reference: [11] Spanier, E. H.: Algebraic Topology.McGraw-Hill Series in Higher Mathematics, \hbox{McGraw}-Hill, New York (1966). Zbl 0145.43303, MR 0210112, 10.1007/978-1-4684-9322-1
Reference: [12] Szegö, G.: Inequalities for certain eigenvalues of a membrane of given area.J. Ration. Mech. Anal. 3 (1954), 343-356. Zbl 0055.08802, MR 0061749, 10.1512/iumj.1954.3.53017
Reference: [13] Weinberger, H. F.: An isoperimetric inequality for the $n$-dimensional free membrane problem.J. Ration. Mech. Anal. 5 (1956), 633-636. Zbl 0071.09902, MR 0079286, 10.1512/iumj.1956.5.55021
Reference: [14] Xia, C.: A universal bound for the low eigenvalues of Neumann Laplacians on compact domains in a Hadamard manifold.Monatsh. Math. 128 (1999), 165-171. Zbl 0941.58021, MR 1712488, 10.1007/s006050050054
.

Files

Files Size Format View
CzechMathJ_70-2020-2_11.pdf 295.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo