Title:
|
A universal bound for lower Neumann eigenvalues of the Laplacian (English) |
Author:
|
Lu, Wei |
Author:
|
Mao, Jing |
Author:
|
Wu, Chuanxi |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
70 |
Issue:
|
2 |
Year:
|
2020 |
Pages:
|
473-482 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $M$ be an $n$-dimensional ($n\ge 2$) simply connected Hadamard manifold. If the radial Ricci curvature of $M$ is bounded from below by $(n-1)k(t)$ with respect to some point $p\in M$, where $t=d(\cdot ,p)$ is the Riemannian distance on $M$ to $p$, $k(t)$ is a nonpositive continuous function on $(0,\infty )$, then the first $n$ nonzero Neumann eigenvalues of the Laplacian on the geodesic ball $B(p,l)$, with center $p$ and radius $0<l<\infty $, satisfy $$ \frac {1}{\mu _1}+\frac {1}{\mu _2}+\cdots +\frac {1}{\mu _n}\ge \frac {l^{n+2}}{(n+2)\int _{0}^{l}f^{n-1}(t){\rm d}t}, $$ where $f(t)$ is the solution to $$ \begin {cases} f''(t)+k(t)f(t)=0 \quad \text {on} \ (0,\infty ),\\ f(0)=0, \ f'(0)=1. \end {cases} $$ (English) |
Keyword:
|
Hadamard manifold |
Keyword:
|
Neumann eigenvalue |
Keyword:
|
radial Ricci curvature |
MSC:
|
35P15 |
MSC:
|
53C20 |
idZBL:
|
07217146 |
idMR:
|
MR4111854 |
DOI:
|
10.21136/CMJ.2019.0363-18 |
. |
Date available:
|
2020-06-17T12:35:03Z |
Last updated:
|
2022-07-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148240 |
. |
Reference:
|
[1] Ashbaugh, M. S., Benguria, R. D.: Universal bounds for the low eigenvalues of Neumann Laplacians in $n$ dimensions.SIAM J. Math. Anal. 24 (1993), 557-570. Zbl 0796.35122, MR 1215424, 10.1137/0524034 |
Reference:
|
[2] Ashbaugh, M. S., Benguria, R. D., Laugesen, R. S., Weidl, T.: Low eigenvalues of Laplace and Schrödinger operators.Oberwolfach Rep. 6 (2009), 355-428. Zbl 1177.35003, MR 2604061, 10.4171/OWR/2009/06 |
Reference:
|
[3] Bandle, C.: Isoperimetric inequality for some eigenvalues of an inhomogeneous, free membrane.SIAM J. Appl. Math. 22 (1972), 142-147. Zbl 0237.35069, MR 0313648, 10.1137/0122016 |
Reference:
|
[4] Bandle, C.: Isoperimetric Inequalities and Applications.Monographs and Studies in Mathematics 7, Pitman, Boston (1980). Zbl 0436.35063, MR 0572958 |
Reference:
|
[5] Brouwer, L. E. J.: Über Abbildung von Mannigfaltigkeiten.Math. Ann. 71 (1911), 97-115 German \99999JFM99999 42.0417.01. MR 1511644, 10.1007/BF01456931 |
Reference:
|
[6] Chavel, I.: Eigenvalues in Riemannian Geometry.Pure and Applied Mathematics 115, Academic Press, Orlando (1984). Zbl 0551.53001, MR 0768584, 10.1016/S0079-8169(13)62888-3 |
Reference:
|
[7] Enache, C., Philippin, G. A.: Some inequalities involving eigenvalues of the Neumann Laplacian.Math. Methods Appl. Sci. 36 (2013), 2145-2153. Zbl 1276.35121, MR 3124783, 10.1002/mma.2743 |
Reference:
|
[8] Freitas, P., Mao, J., Salavessa, I.: Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds.Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. Zbl 1302.35275, MR 3268868, 10.1007/s00526-013-0692-7 |
Reference:
|
[9] Girouard, A., Nadirashvili, N., Polterovich, I.: Maximization of the second positive Neumann eigenvalue for planar domains.J. Differ. Geom. 83 (2009), 637-662. Zbl 1186.35120, MR 2581359, 10.4310/jdg/1264601037 |
Reference:
|
[10] Mao, J.: Eigenvalue inequalities for the $p$-Laplacian on a Riemannian manifold and estimates for the heat kernel.J. Math. Pures Appl. 101 (2014), 372-393. Zbl 1285.58013, MR 3168915, 10.1016/j.matpur.2013.06.006 |
Reference:
|
[11] Spanier, E. H.: Algebraic Topology.McGraw-Hill Series in Higher Mathematics, \hbox{McGraw}-Hill, New York (1966). Zbl 0145.43303, MR 0210112, 10.1007/978-1-4684-9322-1 |
Reference:
|
[12] Szegö, G.: Inequalities for certain eigenvalues of a membrane of given area.J. Ration. Mech. Anal. 3 (1954), 343-356. Zbl 0055.08802, MR 0061749, 10.1512/iumj.1954.3.53017 |
Reference:
|
[13] Weinberger, H. F.: An isoperimetric inequality for the $n$-dimensional free membrane problem.J. Ration. Mech. Anal. 5 (1956), 633-636. Zbl 0071.09902, MR 0079286, 10.1512/iumj.1956.5.55021 |
Reference:
|
[14] Xia, C.: A universal bound for the low eigenvalues of Neumann Laplacians on compact domains in a Hadamard manifold.Monatsh. Math. 128 (1999), 165-171. Zbl 0941.58021, MR 1712488, 10.1007/s006050050054 |
. |