Previous |  Up |  Next

Article

Title: Annihilators of skew derivations with Engel conditions on prime rings (English)
Author: Pehlivan, Taylan
Author: Albas, Emine
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 2
Year: 2020
Pages: 587-603
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a noncommutative prime ring of characteristic different from 2, with its two-sided Martindale quotient ring $Q$, $C$ the extended centroid of $R$ and $a\in R$. Suppose that $\delta $ is a nonzero $\sigma $-derivation of $R$ such that $a[\delta (x^{n}),x^{n}]_{k}=0$ for all $x\in R$, where $\sigma $ is an automorphism of $R$, $n$ and $k$ are fixed positive integers. Then $a=0$. (English)
Keyword: prime ring
Keyword: derivation
Keyword: skew derivation
Keyword: automorphism
MSC: 16W20
MSC: 16W25
idZBL: 07217152
idMR: MR4111860
DOI: 10.21136/CMJ.2019.0412-18
.
Date available: 2020-06-17T12:37:54Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148246
.
Reference: [1] Albaş, E., Argaç, N., Filippis, V. De: Generalized derivations with Engel conditions on one-sided ideals.Commun. Algebra 36 (2008), 2063-2071. Zbl 1145.16014, MR 2418376, 10.1080/00927870801949328
Reference: [2] Yarbil, N. Baydar, Filippis, V. De: A quadratic differential identity with skew derivations.Commun. Algebra 46 (2018), 205-216. Zbl 1419.16025, MR 3764857, 10.1080/00927872.2017.1316853
Reference: [3] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities.Pure and Applied Mathematics 196, Marcel Dekker, New York (1996). Zbl 0847.16001, MR 1368853
Reference: [4] Chang, J.-C.: On the identity $h(x)=af(x)+g(x)b$.Taiwanese J. Math. 7 (2003), 103-113. Zbl 1048.16018, MR 1961042, 10.11650/twjm/1500407520
Reference: [5] Chang, J.-C.: Generalized skew derivations with annihilating Engel conditions.Taiwanese J. Math. 12 (2008), 1641-1650. Zbl 1184.16044, MR 2449653, 10.11650/twjm/1500405076
Reference: [6] Chang, J.-C.: Generalized skew derivations with Engel conditions on Lie ideals.Bull. Inst. Math., Acad. Sin. (N.S.) 6 (2011), 305-320. Zbl 1275.16032, MR 2907284
Reference: [7] Chou, M.-C., Liu, C.-K.: Annihilators of skew derivations with Engel conditions on Lie ideals.Commun. Algebra 44 (2016), 898-911. Zbl 1343.16037, MR 3449959, 10.1080/00927872.2014.990028
Reference: [8] Chuang, C.-L.: Differential identities with automorphisms and antiautomorphisms I.J. Algebra 149 (1992), 371-404. Zbl 0773.16007, MR 1172436, 10.1016/0021-8693(92)90023-F
Reference: [9] Chuang, C.-L.: Differential identities with automorphisms and antiautomorphisms II.J. Algebra 160 (1993), 130-171. Zbl 0793.16014, MR 1237081, 10.1006/jabr.1993.1181
Reference: [10] Chuang, C.-L., Chou, M.-C., Liu, C.-K.: Skew derivations with annihilating Engel conditions.Publ. Math. 68 (2006), 161-170. Zbl 1105.16030, MR 2213548
Reference: [11] Chuang, C.-L., Lee, T.-K.: Identities with a single skew derivation.J. Algebra 288 (2005), 59-77. Zbl 1073.16021, MR 2138371, 10.1016/j.jalgebra.2003.12.032
Reference: [12] Chuang, C.-L., Liu, C.-K.: Extended Jacobson density theorem for rings with skew derivations.Commun. Algebra 35 (2007), 1391-1413. Zbl 1122.16030, MR 2313675, 10.1080/00927870601142207
Reference: [13] Filippis, V. De: On the annihilator of commutators with derivation in prime rings.Rend. Circ. Math. Palermo, II Ser. 49 (2000), 343-352. Zbl 0962.16017, MR 1765404, 10.1007/BF02904239
Reference: [14] Dhara, B., Kar, S., Pradhan, K. G.: An Engel condition of generalized derivations with annihilator on Lie ideal in prime rings.Mat. Vesn. 68 (2016), 164-174. Zbl 06750067, MR 3509647
Reference: [15] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras.Pac. J. Math. 60 (1975), 49-63. Zbl 0355.17005, MR 0382379, 10.2140/pjm.1975.60.49
Reference: [16] Jacobson, N.: Structure of Rings.American Mathematical Society Colloquium Publications 37, AMS, Providence (1964). Zbl 0073.02002, MR 0222106, 10.1090/coll/037
Reference: [17] Kharchenko, V. K.: Generalized identities with automorphisms.Algebra Logic 14 (1976), 132-148 translation from Algebra Logika 14 1975 215-237. Zbl 0382.16009, MR 0399153, 10.1007/BF01668471
Reference: [18] Lam, T. Y.: A First Course in Noncommutative Rings.Graduate Texts in Mathematics 131, Springer, New York (1991). Zbl 0728.16001, MR 1125071, 10.1007/978-1-4684-0406-7
Reference: [19] Lanski, C.: An Engel condition with derivation for left ideals.Proc. Am. Math. Soc. 125 (1997), 339-345. Zbl 0869.16027, MR 1363174, 10.1090/S0002-9939-97-03673-3
Reference: [20] Lanski, C.: Skew derivations and Engel conditions.Commun. Algebra 42 (2014), 139-152. Zbl 1296.16050, MR 3169560, 10.1080/00927872.2012.707719
Reference: [21] Lee, T.-K.: Generalized derivations of left faithful rings.Commun. Algebra 27 (1999), 4057-4073. Zbl 0946.16026, MR 1700189, 10.1080/00927879908826682
Reference: [22] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity.J. Algebra 12 (1969), 576-584. Zbl 0175.03102, MR 0238897, 10.1016/0021-8693(69)90029-5
Reference: [23] Posner, E. C.: Derivations in prime rings.Proc. Am. Math. Soc. 8 (1957), 1093-1100. Zbl 0082.03003, MR 0095863, 10.1090/S0002-9939-1957-0095863-0
Reference: [24] Shiue, W.-K.: Annihilators of derivations with Engel conditions on Lie ideals.Rend. Circ. Mat. Palermo (2) 52 (2003), 505-509. Zbl 1146.16307, MR 2029557, 10.1007/BF02872768
Reference: [25] Shiue, W.-K.: Annihilators of derivations with Engel conditions on one-sided ideals.Publ. Math. 62 (2003), 237-243. Zbl 1026.16021, MR 1956813
.

Files

Files Size Format View
CzechMathJ_70-2020-2_17.pdf 327.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo