Previous |  Up |  Next

Article

Title: On dual Ramsey theorems for relational structures (English)
Author: Mašulović, Dragan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 2
Year: 2020
Pages: 553-585
Summary lang: English
.
Category: math
.
Summary: We discuss dual Ramsey statements for several classes of finite relational structures (such as finite linearly ordered graphs, finite linearly ordered metric spaces and finite posets with a linear extension) and conclude the paper with another rendering of the Nešetřil-Rödl Theorem for relational structures. Instead of embeddings which are crucial for ``direct'' Ramsey results, for each class of structures under consideration we propose a special class of quotient maps and prove a dual Ramsey theorem in such a setting. Although our methods are based on reinterpreting the (dual) Ramsey property in the language of category theory, all our results are about classes of finite structures. (English)
Keyword: dual Ramsey property
Keyword: finite relational structure
Keyword: category theory
MSC: 05C55
MSC: 18A99
idZBL: 07217151
idMR: MR4111859
DOI: 10.21136/CMJ.2020.0408-18
.
Date available: 2020-06-17T12:37:25Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148245
.
Reference: [1] Abramson, F. G., Harrington, L. A.: Models without indiscernibles.J. Symb. Log. 43 (1978), 572-600. Zbl 0391.03027, MR 0503795, 10.2307/2273534
Reference: [2] Adámek, J., Herrlich, H., Strecker, G. E.: Abstract and Concrete Categories: The Joy of Cats.Dover Books on Mathematics, Dover Publications, Mineola (2009). Zbl 0695.18001, MR 1051419
Reference: [3] Frankl, P., Graham, R. L., Rödl, V.: Induced restricted Ramsey theorems for spaces.J. Comb. Theory, Ser. A 44 (1987), 120-128. Zbl 0608.05059, MR 0871393, 10.1016/0097-3165(87)90064-1
Reference: [4] Graham, R. L., Rothschild, B. L.: Ramsey's theorem for $n$-parameter sets.Trans. Am. Math. Soc. 159 (1971), 257-292. Zbl 0233.05003, MR 0284352, 10.1090/S0002-9947-1971-0284352-8
Reference: [5] Mašulović, D.: A dual Ramsey theorem for permutations.Electron. J. Comb. 24 (2017), Article ID P3.39, 12 pages. Zbl 1369.05200, MR 3691556
Reference: [6] Mašulović, D.: Pre-adjunctions and the Ramsey property.Eur. J. Comb. 70 (2018), 268-283. Zbl 1384.05153, MR 3779618, 10.1016/j.ejc.2018.01.006
Reference: [7] Mašulović, D., Scow, L.: Categorical equivalence and the Ramsey property for finite powers of a primal algebra.Algebra Univers. 78 (2017), 159-179. Zbl 1421.08003, MR 3697187, 10.1007/s00012-017-0453-0
Reference: [8] Nešetřil, J.: Ramsey theory.Handbook of Combinatorics, Vol. 2 R. L. Graham et al. Elsevier, Amsterdam, (1995), 1331-1403. Zbl 0848.05065, MR 1373681
Reference: [9] Nešetřil, J.: Metric spaces are Ramsey.Eur. J. Comb. 28 (2007), 457-468. Zbl 1106.05099, MR 2261831, 10.1016/j.ejc.2004.11.003
Reference: [10] Nešetřil, J., Rödl, V.: Partitions of finite relational and set systems.J. Comb. Theory, Ser. A 22 (1977), 289-312. Zbl 0361.05017, MR 0437351, 10.1016/0097-3165(77)90004-8
Reference: [11] Nešetřil, J., Rödl, V.: Dual Ramsey type theorems.Abstracta Eighth Winter School on Abstract Analysis, Mathematical Institute AS CR, Prague (1980), Z. Frolík 121-123.
Reference: [12] Nešetřil, J., Rödl, V.: Ramsey classes of set systems.J. Comb. Theory, Ser. A 34 (1983), 183-201. Zbl 0515.05010, MR 0692827, 10.1016/0097-3165(83)90055-9
Reference: [13] Nešetřil, J., Rödl, V.: The partite construction and Ramsey set systems.Discrete Math. 75 (1989), 327-334. Zbl 0671.05006, MR 1001405, 10.1016/0012-365X(89)90097-6
Reference: [14] Prömel, H. J.: Induced partition properties of combinatorial cubes.J. Comb. Theory, Ser. A 39 (1985), 177-208. Zbl 0638.05005, MR 0793270, 10.1016/0097-3165(85)90036-6
Reference: [15] Prömel, H. J., Voigt, B.: Hereditary attributes of surjections and parameter sets.Eur. J. Comb. 7 (1986), 161-170. Zbl 0606.05002, MR 0856329, 10.1016/S0195-6698(86)80042-7
Reference: [16] Prömel, H. J., Voigt, B.: A sparse Graham-Rothschild theorem.Trans. Am. Math. Soc. 309 (1988), 113-137. Zbl 0662.05006, MR 0957064, 10.1090/S0002-9947-1988-0957064-5
Reference: [17] Ramsey, F. P.: On a problem of formal logic.Proc. Lond. Math. Soc. 30 (1930), 264-286 \99999JFM99999 55.0032.04. MR 1576401, 10.1112/plms/s2-30.1.264
Reference: [18] Sokić, M.: Ramsey properties of finite posets II.Order 29 (2012), 31-47. Zbl 1254.03067, MR 2948747, 10.1007/s11083-011-9196-2
Reference: [19] Solecki, S.: A Ramsey theorem for structures with both relations and functions.J. Comb. Theory, Ser. A 117 (2010), 704-714. Zbl 1247.05256, MR 2645186, 10.1016/j.jcta.2009.12.004
.

Files

Files Size Format View
CzechMathJ_70-2020-2_16.pdf 498.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo