Previous |  Up |  Next

Article

Title: On the Packing of Cubes and Other Objects (English)
Title: O ukladaní kociek a iných objektov (Slovak)
Author: Bálint, Vojtech
Author: Sedliačková, Zuzana
Author: Adamko, Peter
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 65
Issue: 2
Year: 2020
Pages: 61-75
Summary lang: Slovak
.
Category: math
.
Summary: Uvedieme históriu a prehľad výsledkov o ukladaní kociek do kvádra s minimálnym objemom a pridáme aj hlavné myšlienky niektorých dôkazov. V závere sa veľmi stručne zmienime o iných ukladacích problémoch. (Slovak)
MSC: 52C15
MSC: 52C17
.
Date available: 2020-06-22T08:57:07Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/148247
.
Reference: [1] Adamko, P.: On the volume of points at distance at least 1 in the unit four-dimensional cube.. J. Geom. Graph. 23 (2019), 1–3. MR 3982404
Reference: [2] Adamko, P., Bálint, V.: Universal asymptotical results on packing of cubes.. Stud. Univ. Žilina Math. Ser. 28 (2016), 5–16.
Reference: [3] Ament, P., Blind, G.: Packing equal circles in a square.. Studia Sci. Math. Hungar. 36 (2000), 313–316. MR 1798737
Reference: [4] Andreescu, T., Mushkarov, O.: A note on the Malfatti problem.. Math. Reflections 4 (2006), 1–7.
Reference: [5] Anstreicher, K. M.: The thirteen spheres: A new proof.. Discrete Comput. Geom. 31 (2004), 613–625. MR 2053501, 10.1007/s00454-003-0819-2
Reference: [6] Bálint, V.: Poznámka k jednému ukladaciemu problému.. Práce a Štúdie Vysokej školy dopravy a spojov v Žiline, séria Mat.–Fyz. 8 (1990), 7–12.
Reference: [7] Bálint, V.: A packing problem and the geometrical series.. In: Nešetřil, J., Fiedler, M. (eds.): Fourth Czechoslovakian symposium on combinatorics, graphs and complexity, held in Prachatice, Czechoslovakia, 1990. Proceedings. Annals of Discrete Mathematics, vol. 51. North-Holland, Amsterdam, 1992, 17–21. MR 1206238
Reference: [8] Bálint, V.: Two packing problems.. Discrete Math. 178 (1998), 233–236. MR 1483753, 10.1016/S0012-365X(97)81831-6
Reference: [9] Bálint, V.: Maximization of the sum of areas.. Stud. Univ. Žilina Math. Ser. 24 (2010), 1–8. MR 2829522
Reference: [10] Bálint, V.: Dva typy najlepších uložení systému štvorcov v obdĺžniku.. Proceedings of Symposium on Computer Geometry, STU, Bratislava, 2011, 13–16.
Reference: [11] Bálint, V., Adamko, P.: Minimalizácia objemu kvádra pre uloženie troch kociek v dimenzii 4.. G, Slov. Čas. Geom. Graf. 12 (2015), 5–16.
Reference: [12] Bálint, V., Adamko, P.: Minimization of the container for packing of three cubes in dimension 4.. Proceedings of Slovak–Czech Conference on Geometry and Graphics, STU, Bratislava, 2015, 13–24.
Reference: [13] Bálint, V., Adamko, P.: Minimization of the parallelepiped for packing of three cubes in dimension 6.. Proceedings of APLIMAT 2016 – 15th Conference on Applied Mathematics, Bratislava, 2016, 44–55.
Reference: [14] Bálint, V., Bálint, V., jr.: Unicity of one optimal arrangement of points in the cube.. Proceedings of Symposium on Computer Geometry, Bratislava, 2001, 8–10.
Reference: [15] Bálint, V., Bálint, V., jr.: On the volume of points at distance at least one in the unit cube.. Geombinatorics 12 (2003), 157–166. MR 1972054
Reference: [16] Bálint, V., Bálint, V., jr.: Horný odhad pre rozmiestňovanie bodov v kocke.. Sborník 5. konference o matematice a fyzice na VŠT, Brno, 2007, 32–35.
Reference: [17] Bálint, V., Bálint, V., jr.: On the maximum volume of points at least one unit away from each other in the unit $n$-cube.. Periodica Math. Hung. 57 (2008), 83–91. MR 2448399, 10.1007/s10998-008-7083-2
Reference: [18] Bálint, V., Bálint, V., jr.: Umiestňovnie bodov do jednotkovej kocky.. G, Slov. Čas. Geom. Graf. 5 (2008), 5–12.
Reference: [19] Bálint, V., Bálint, V., jr.: Placing of points into the 5-dimensional unit cube.. Period. Math. Hungar. 65 (2012), 1–16. MR 2970062, 10.1007/s10998-012-2275-3
Reference: [20] Bálint, V., Bálint, V., jr.: Packing of points into the unit 6-dimensional cube.. Contrib. Discrete Math. 7 (2012), 51–57. MR 2956337
Reference: [21] Bálint, V., Kaukič, M., Peško, Š.: Solving one maximization problem using a computer.. Abstracts of the 3rd Croatian Conference on Geometry and Graphics, http://www.grad.hr/sgorjanc/supetar/abstracts.pdf
Reference: [22] Bezdek, A., Fodor, F.: Extremal triangulations of convex polygons.. Symmetry: Culture and Science 21 (2010), 333–340.
Reference: [23] Böröczky, K.: The Newton-Gregory problem revisited.. In: Bezdek, A. (ed.): Discrete Geometry, Marcel Dekker, New York, 2003, 103–110. MR 2034712
Reference: [24] Böröczky, K., jr.: Finite packing and covering.. Cambridge Univ. Press, 2004. MR 2078625
Reference: [25] Brass, P., Moser, W. O. J., Pach, J.: Research problems in discrete geometry.. Springer, New York, 2005. MR 2163782
Reference: [26] Cohn, H., Elkies, N. D.: New upper bounds on sphere packings I.. Ann. of Math. (2) 157 (2003), 689–714. MR 1973059
Reference: [27] Croft, H. T., Falconer, K. J., Guy, R. K.: Unsolved problems in geometry.. 2nd ed., Springer-Verlag, New York–Berlin–Heidelberg, 1994. MR 1316393
Reference: [28] Edel, Y., Rains, E. M., Sloane, N. J. A.: On kissing volumes in dimensions 32 to 128.. Electron. J. Combin. 5 (1988), #R22. MR 1614304
Reference: [29] Erdős, P.: On some problems of elementary and combinatorial geometry.. Ann. Mat. Pura Appl., Ser. IV 103 (1975), 99–108. MR 0411984, 10.1007/BF02414146
Reference: [30] Erdős, P.: Some more problems on elementary geometry.. Austral. Math. Soc. Gaz. 5 (1978), 52–54. MR 0509363
Reference: [31] Fejes Tóth, L.: Remarks on a theorem of R. M. Robinson.. Studia Sci. Math. Hung. 4 (1969), 441–445. MR 0254744
Reference: [32] Fejes Tóth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum.. 2. Auflage, Springer-Verlag, 2003. MR 0353117
Reference: [33] Fejes Tóth, G., Kuperberg, W.: Packing and covering with convex sets.. In: Gruber, P. M. et al. (ed.): Handbook of convex geometry, Volume B, North-Holland, Amsterdam, 1993, 799–860. MR 1242997
Reference: [34] Ferguson, S. P., Hales, T. C.: The Kepler conjecture: The Hales–Ferguson proof.. Springer, New York, 2011. MR 3075372
Reference: [35] Fodor, F.: The densest packing of 19 congruent circles in a circle.. Geom. Dedicata 74 (1999), 139–145. MR 1674049, 10.1023/A:1005091317243
Reference: [36] Fodor, F.: The densest packing of 12 congruent circles in a circle.. Beitr. Algebra Geom. 21 (2000), 401–409. MR 1801430
Reference: [37] Fodor, F.: Packing 14 congruent circles in a circle.. Stud. Univ. Žilina Math. Ser. 16 (2003), 25–34. MR 2065745
Reference: [38] Fodor, F.: The densest packing of 13 congruent circles in a circle.. Beitr. Algebra Geom. 21 (2003), 431–440. MR 2017043
Reference: [39] Gauss, C. F.: Recension der Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seber.. J. Reine Angew. Math. 20 (1840), 312–320. MR 1578241
Reference: [40] Graham, R. L., Lubachevsky, B. D.: Dense packings of equal disks in an equilateral triangle: from 22 to 34 and beyond.. Electron. J. Combin. 2 (1995), #A1. MR 1309122, 10.37236/1223
Reference: [41] Graham, R. L., Lubachevsky, B. D., Nurmela, K. J., Östergård, P. R. J.: Dense packings of congruent circles in a circle.. Discrete Math. 181 (1998), 139–154. MR 1600759, 10.1016/S0012-365X(97)00050-2
Reference: [42] Groemer, H.: Covering and packing properties of bounded sequences of convex sets.. Mathematica 29 (1982), 18–31. MR 0673502
Reference: [43] Guy, R. K.: Problems.. In: Kelly, L. M. (ed.): The geometry of metric and linear spaces. Proceedings of a conference held at Michigan State University, East Lansing, June 17–19, 1974, Springer-Verlag, 1975, 233–244. MR 0388240
Reference: [44] Hadwiger, H.: Über Treffenzahlen bei translationsgleichen Eikörpen.. Arch. Math. 8 (1957), 212–213. MR 0091490, 10.1007/BF01899995
Reference: [45] Hales, T. C.: The sphere packing problem.. J. Comput. Appl. Math. 44 (1992), 41–76. MR 1199253, 10.1016/0377-0427(92)90052-Y
Reference: [46] Hales, T. C.: The status of the Kepler conjecture.. Math. Intelligencer 16 (1994), 47–58. MR 1281754, 10.1007/BF03024356
Reference: [47] Hales, T. C.: Sphere packings, I.. Discrete Comput. Geom. 17 (1997), 1–51. MR 1418278, 10.1007/BF02770863
Reference: [48] Hales, T. C.: Sphere packings, II.. Discrete Comput. Geom. 18 (1997), 135–149. MR 1455511, 10.1007/PL00009312
Reference: [49] Hales, T. C.: Cannonballs and honeycombs.. Notices Amer. Math. Soc. 47 (2000), 440–449. MR 1745624
Reference: [50] Hales, T. C., Ferguson, S. P.: The Kepler conjecture.. Discrete Comput. Geom. 36 (2006), 1–269. MR 3075372
Reference: [51] Hortobágyi, I.: Über die Scheibenklassen bezügliche Newtonsche Zahl der konvexen Scheiben.. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 18 (1975), 123–127. MR 0425775
Reference: [52] Horvát, G. Á.: Packing points into a unit cube in higher space.. Stud. Univ. Žilina Math. Ser. 24 (2010), 23–28. MR 2829525
Reference: [53] Hougardy, S.: On packing squares into a rectangle.. Tech. Report 101007. Forschungsinstitut für Diskrete Mathematik, March 2010. MR 2805963
Reference: [54] Hsiang, W.-Y.: On the sphere packing problem and the proof of Kepler’s conjecture.. Internat. J. Math. 4 (1993), 739–831. MR 1245351, 10.1142/S0129167X93000364
Reference: [55] Hsiang, W.-Y.: A rejoinder to T. C. Hales’ article: The status of the Kepler conjecture.. Math. Intelligencer 17 (1994), 35–42. MR 1319992
Reference: [56] Januszewski, J.: Packing rectangles into a large square.. Period. Math. Hungar. 72 (2016), 90–101. MR 3470807, 10.1007/s10998-015-0083-2
Reference: [57] Jennings, D.: On packing unequal rectangles in the unit square.. J. Combin. Theory, Ser. A 68 (1994), 465–469. MR 1297183, 10.1016/0097-3165(94)90116-3
Reference: [58] Jennings, D.: On packing of squares and rectangles.. Discrete Math. 138 (1995), 293–300. MR 1322104, 10.1016/0012-365X(94)00211-Z
Reference: [59] Joós, A.: Pontok elhelyezése egységkockában.. PhD tézisek, 2008.
Reference: [60] Joós, A.: On the volume of points at distance at least 1 in the 5-dimensional unit cube.. Acta Sci. Math. 76 (2010), 217–231. MR 2668418, 10.1007/BF03549837
Reference: [61] Joós, A., Bálint, V.: Packing of odd squares revisited.. J. Geom. 110 (2019), article no. 10. MR 3895357, 10.1007/s00022-018-0464-9
Reference: [62] Kabatjanskij, G. A., Levenshtein, V. I.: Bounds for packings on a sphere and space.. Problemy Peredachi Informatsii 14 (1978), 3–24. MR 0514023
Reference: [63] Kepler, J.: Strena seu de nive sexangula.. Tampach, Frankfurt, 1611. English translation: The six-cornered snowflake. Oxford, 1966.
Reference: [64] Kleitman, D. J., Krieger, M. M.: Packing squares in rectangles I.. Ann. New York Acad. Sci. 175 (1970), 253–262. MR 0264519, 10.1111/j.1749-6632.1970.tb56476.x
Reference: [65] Kleitman, D. J., Krieger, M. M.: An optimal bound for two dimensional bin packing.. Proceedings of the 16th Annual Symposium on Foundations of Computer Science, IEEE Computer Society, 1975, 163–168. MR 0423195
Reference: [66] Kosiński, A.: A proof of the Auerbach-Banach-Mazur-Ulam theorem on convex bodies.. Colloq. Math. 4 (1957), 216–218. MR 0086324, 10.4064/cm-4-2-216-218
Reference: [67] Leech, J.: The problem of thirteen spheres.. Math. Gaz. 40 (1956), 22–23. MR 0076369, 10.2307/3610264
Reference: [68] Leech, J.: Some sphere packings in higher space.. Canad. J. Math. 16 (1964), 657–682. MR 0167901, 10.4153/CJM-1964-065-1
Reference: [69] Levenshtein, V. I.: On bounds for packings in $n$-dimensional Euclidean space.. Soviet Math. Dokl. 20 (1979), 417–421. MR 0529659
Reference: [70] Lubachevsky, B. D., Graham, R. L., Stikkinger, F. H.: Patterns and structures in disk packings.. Period. Math. Hungar. 34 (1997), 123–142. MR 1608310, 10.1023/A:1004284826421
Reference: [71] Malfatti, G.: Memoria sopra un problema sterotomico.. Memorie di Matematica e di Fisica della Societa Italiana delle Scienze 10 (1803), 235–244.
Reference: [72] Markót, M. Cs.: Optimal packing of 28 equal circles in a unit square – the first reliable solution.. Numer. Algorithms 37 (2004), 253–261. MR 2109911, 10.1023/B:NUMA.0000049472.75023.0a
Reference: [73] Mauldin, R. D.: The Scottish Book.. Birkhäuser, 1981. MR 0666400
Reference: [74] Meir, A., Moser, L.: On packing of squares and cubes.. J. Combin. Theory 5 (1968), 126–134. MR 0229142, 10.1016/S0021-9800(68)80047-X
Reference: [75] Melissen, J. B. M.: Densest packings of congruent circles in an equilateral triangle.. Amer. Math. Monthly 100 (1993), 916–925. MR 1252928, 10.1080/00029890.1993.11990512
Reference: [76] Melissen, J. B. M.: Densest packing of six equal circles in a square.. Elem. Math. 49 (1994), 27–31. MR 1261756
Reference: [77] Melissen, J. B. M.: Densest packing of eleven congruent circles in a circle.. Geom. Dedicata 50 (1994), 15–25. MR 1280791, 10.1007/BF01263647
Reference: [78] Melissen, J. B. M.: Densest packing of eleven congruent circles in an equilateral triangle.. Acta Math. 65 (1994), 389–393. MR 1281448
Reference: [79] Melissen, J. B. M., Schuur, P. C.: Packing 16, 17 or 18 circles in an equilateral triangle.. Discrete Math. 145 (1995), 333–342. MR 1356610, 10.1016/0012-365X(95)90139-C
Reference: [80] Moon, J., Moser, L.: Some packing and covering theorems.. Colloq. Math. 17 (1967), 103–110. Zbl 0152.39502, MR 0215197, 10.4064/cm-17-1-103-110
Reference: [81] Moser, L.: Poorly formulated unsolved problems of combinatorial geometry.. 1963.
Reference: [82] Moser, W. O. J.: Problems, problems, problems.. Discrete Appl. Math. 31 (1991), 201–225. MR 1106701, 10.1016/0166-218X(91)90071-4
Reference: [83] Moser, W. O. J., Pach, J.: Research problems in discrete geometry.. McGill University, Montreal, 1986, 1993. MR 1106701
Reference: [84] Musin, O. R.: The problem of twenty-five spheres.. Russian Math. Surveys 58 (2003), 794–795. MR 2042912, 10.1070/RM2003v058n04ABEH000651
Reference: [85] Musin, O. R.: The kissing volume in four dimensions.. Ann. of Math. (2) 168 (2008), 1–32. MR 2415397
Reference: [86] Novotný, P.: A note on packing of squares.. Studies Univ. Žilina Mat.-Phys. Ser. A 10 (1995), 35–39. MR 1437834
Reference: [87] Novotný, P.: On packing of squares into a rectangle.. Arch. Math. (Brno) 32 (1996), 75–83. MR 1407340
Reference: [88] Novotný, P.: On packing of four and five squares into a rectangle.. Note Mat. 19 (1999), 199–206. MR 1816873
Reference: [89] Novotný, P.: Využitie počítača pri riešení ukladacieho problému.. Proceedings of Symposium on Computational Geometry, STU, Bratislava, 2002, 60–62.
Reference: [90] Novotný, P.: Pakovanie troch kociek.. Proceedings of Symposium on Computer Geometry, STU, Bratislava, 2006, 117–119.
Reference: [91] Novotný, P.: Najhoršie pakovateľné štyri kocky.. Proceedings of Symposium on Computer Geometry, STU, Bratislava, 2007, 78–81.
Reference: [92] Novotný, P.: Ukladanie kociek do kvádra.. Proceedings of Symposium on Computer Geometry, STU, Bratislava, 2011, 100–103.
Reference: [93] Nurmela, K. J., Östergård, P. R. J.: More optimal packings of equal circles in a square.. Discrete Comput. Geom. 22 (1999), 439–457. MR 1706578, 10.1007/PL00009472
Reference: [94] Odlyzko, A. M., Sloane, N. J. A.: New bounds on the unit spheres that can touch a unit sphere in n-dimensions.. J. Combin. Theory Ser. A 26 (1979), 210–214. MR 0530296, 10.1016/0097-3165(79)90074-8
Reference: [95] Oler, N.: A finite packing problem.. Canad. Math. Bull. 4 (1961), 153–155. MR 0133065, 10.4153/CMB-1961-018-7
Reference: [96] Paulhus, M.: An algorithm for packing squares.. J. Combin. Theory Ser. A 82 (1998), 147–157. MR 1620857, 10.1006/jcta.1997.2836
Reference: [97] Payan, Ch.: Empilement de cercles égaux dans un triangle équilatéral. À propos d’une conjecture d’Erdős-Oler.. Discrete Math. 165–166 (1997), 555–565. MR 1439300, 10.1016/S0012-365X(96)00201-4
Reference: [98] Peikert, R., Würtz, D., Monagan, M., de Groot, C.: Packing circles in a square: A review and new results.. In: Kall, P. (ed.): System modelling and optimization. Proceedings of the 15th IFIP conference, Zurich, Switzerland, September 2–6, 1991, Springer-Verlag, Berlin, 1992, 45–54. MR 1182322
Reference: [99] Pirl, U.: Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten.. Math. Nachr. 40 (1969), 111–124. MR 0253164, 10.1002/mana.19690400110
Reference: [100] Rogers, C. A.: The packing of equal spheres.. Proc. Lond. Math. Soc. (3) 8 (1958), 609–620. MR 0102052, 10.1112/plms/s3-8.4.609
Reference: [101] Sedliačková, Z.: Packing three cubes in 8-dimensional space.. J. Geom. Graph. 22 (2018), No. 2, 217–223. MR 3919006
Reference: [102] Schaer, J.: The densest packing of 9 circles in a square.. Canad. Math. Bull. 8 (1965), 273–277. MR 0181938, 10.4153/CMB-1965-018-9
Reference: [103] Schaer, J.: On the densest packing of spheres in a cube.. Canad. Math. Bull. 9 (1966), 265–270. MR 0200797, 10.4153/CMB-1966-033-0
Reference: [104] Schaer, J., Meir, A.: On a geometric extremum problem.. Canad. Math. Bull. 8 (1965), 21–27. MR 0175029, 10.4153/CMB-1965-004-x
Reference: [105] Schütte, K., van der Waerden, B. L.: Das Problem der dreizehn Kugeln.. Math. Ann. 125 (1953), 325–334. MR 0053537, 10.1007/BF01343127
Reference: [106] Thue, A.: On the densest packing of congruent circles in the plane.. Skr. Vidensk.-Selsk. Christiana 1 (1910), 3–9. MR 2994977
Reference: [107] Vardy, A.: A new sphere packing in 20 dimensions.. Invent. Math. 121 (1995), 119–133. MR 1345286, 10.1007/BF01884292
Reference: [108] Zalgaller, V. A., Los, G. A.: The solution of Malfatti’s problem.. J. Math. Sci. (N.Y.) 72 (1994), 3163–3177. MR 1267528, 10.1007/BF01249514
Reference: [109] Zong, C.: The kissing volumes of convex bodies – a brief survey.. Bull. Lond. Math. Soc. 30 (1998), 1–10. MR 1479030, 10.1112/S0024609397003408
.

Files

Files Size Format View
PokrokyMFA_65-2020-2_1.pdf 344.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo