Previous |  Up |  Next

Article

Title: Kappa-Slender Modules (English)
Author: Dimitric, Radoslav
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 28
Issue: 1
Year: 2020
Pages: 1-12
Summary lang: English
.
Category: math
.
Summary: For an arbitrary infinite cardinal $\kappa $, we define classes of $\kappa $-cslender and $\kappa $-tslender modules as well as related classes of $\kappa $-hmodules and initiate a study of these classes. (English)
Keyword: kappa-slender module
Keyword: $k$-coordinatewise slender
Keyword: $k$-tailwise slender
Keyword: $k$-cslender
Keyword: $k$-tslender
Keyword: slender module
Keyword: $k$-hmodule
Keyword: the Hom functor
Keyword: infinite products
Keyword: filtered products
Keyword: infinite coproducts
Keyword: filtered products
Keyword: non-measurable cardinal
Keyword: torsion theory
MSC: 03C20
MSC: 03E10
MSC: 03E20
MSC: 03E55
MSC: 03E75
MSC: 16D80
MSC: 16D90
MSC: 18A20
MSC: 18A30
MSC: 18A40
MSC: 20K25
idZBL: Zbl 07368969
idMR: MR4124286
.
Date available: 2020-07-22T11:44:29Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148255
.
Reference: [1] Dimitric, R.: Slenderness in Abelian Categories.Abelian Group Theory: Proceedings of the Conference at Honolulu, Hawaii, Lect. Notes Math. 1006, 1006, 1983, 375-383, Berlin: Springer Verlag, MR 0722633
Reference: [2] Dimitric, R.: Slenderness. Vol. I. Abelian Categories.2018, Cambridge Tracts in Mathematics No. 215. Cambridge: Cambridge University Press, ISBN: 9781108474429. MR 3930609
Reference: [3] Dimitric, R.: Slenderness. Vol. II. Generalizations. Dualizations.2021, Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, MR 3930609
Reference: [4] Fuchs, L.: Abelian Groups.1958, Budapest: Publishing House of the Hungarian Academy of Science, Reprinted by New York: Pergamon Press (1960).. Zbl 0091.02704, MR 0106942
Reference: [5] Hrbacek, K., Jech, T.: Introduction to Set Theory (3rd edition, revised and expanded).1999, New York -- Basel: Marcel Dekker, MR 1697766
Reference: [6] Łoś, J.: Linear equations and pure subgroups.Bull. Acad. Polon. Sci, 7, 1959, 13-18, MR 0103922
Reference: [7] Stenström, B.: Rings of Quotients. An Introduction to Methods of Ring Theory.1975, Berlin, Heidelberg, New York: Springer-Verlag, MR 0389953
.

Files

Files Size Format View
ActaOstrav_28-2020-1_1.pdf 377.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo