Previous |  Up |  Next

Article

Title: Spectral Theory of Singular Hahn Difference Equation of the Sturm-Liouville Type (English)
Author: Allahverdiev, Bilender P.
Author: Tuna, Hüseyin
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 28
Issue: 1
Year: 2020
Pages: 13-25
Summary lang: English
.
Category: math
.
Summary: In this work, we consider the singular Hahn difference equation of the Sturm-Liouville type. We prove the existence of the spectral function for this equation. We establish Parseval equality and an expansion formula for this equation on a semi-unbounded interval. (English)
Keyword: Hahn's Sturm-Liouville equation
Keyword: spectral function
Keyword: Parseval equality
Keyword: spectral expansion.
MSC: 34B40
MSC: 34L10
MSC: 39A12
MSC: 39A13
MSC: 39A70
idZBL: Zbl 07368970
idMR: MR4124287
.
Date available: 2020-07-22T11:47:54Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148258
.
Reference: [1] Aldwoah, K.A.: Generalized time scales and associated difference equations.2009, Cairo University, Ph.D. Thesis.
Reference: [2] Allahverdiev, B.P., Tuna, H.: An expansion theorem for $q$-Sturm-Liouville operators on the whole line.Turkish J. Math., 42, 3, 2018, 1060-1071, MR 3804971
Reference: [3] Allahverdiev, B.P., Tuna, H.: Spectral expansion for singular Dirac system with impulsive conditions.Turkish J. Math., 42, 5, 2018, 2527-2545, MR 3866169, 10.3906/mat-1803-79
Reference: [4] Allahverdiev, B.P., Tuna, H.: Eigenfunction expansion in the singular case for Dirac systems on time scales.Konuralp J. Math., 7, 1, 2019, 128-135, MR 3948622
Reference: [5] Allahverdiev, B.P., Tuna, H.: The spectral expansion for Hahn-Dirac system on the whole line.Turkish J. Math., 43, 2019, 1668-1687, MR 3962557, 10.3906/mat-1902-16
Reference: [6] Allahverdiev, B.P., Tuna, H.: Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions.Electron. J. Differ.Equat., 2019, 3, 2019, 1-10, MR 3904844
Reference: [7] Allahverdiev, B.P., Tuna, H.: The Parseval equality and expansion formula for singular Hahn-Dirac system.Emerging Applications of Differential Equations and Game Theory, 2020, 209-235, IGI Global,
Reference: [8] Álvarez-Nodarse, R.: On characterizations of classical polynomials.J. Comput. Appl. Math., 196, 1, 2006, 320-337, MR 2241592, 10.1016/j.cam.2005.06.046
Reference: [9] Annaby, M.H., Hamza, A.E., Aldwoah, K.A.: Hahn difference operator and associated Jackson-Nörlund integrals.J. Optim. Theory Appl., 154, 2012, 133-153, MR 2931371, 10.1007/s10957-012-9987-7
Reference: [10] Annaby, M.H., Hamza, A.E., Makharesh, S.D.: A Sturm-Liouville theory for Hahn difference operator.Frontiers of Orthogonal Polynomials and $q$-Series, 2018, 35-84, World Scientific, Singapore, MR 3791609
Reference: [11] Annaby, M.A., Hassan, H.A.: Sampling theorems forJackson-Nörlund transforms associated with Hahn-difference operators.J. Math. Anal. Appl., 464, 1, 2018, 493-506, MR 3794101, 10.1016/j.jmaa.2018.04.016
Reference: [12] Arvesú, J.: On some properties of $q-$Hahn multiple orthogonal polynomials.J. Comput. Appl. Math., 233, 6, 2010, 1462-1469, Elsevier, doi:10.1016/j.cam.2009.02.062. MR 2559332, 10.1016/j.cam.2009.02.062
Reference: [13] Berezanskii, J.M.: Expansions in Eigenfunctions of Selfadjoint Operators.1968, Amer. Math. Soc., Providence, Zbl 0157.16601, MR 0222718
Reference: [14] Dobrogowska, A., Odzijewicz, A.: Second order $q$-difference equations solvable by factorization method.J. Comput. Appl. Math., 193, 1, 2006, 319-346, MR 2228721, 10.1016/j.cam.2005.06.009
Reference: [15] Guseinov, G.Sh.: Eigenfunction expansions for a Sturm-Liouville problem on time scales.Int. J. Difference Equat., 2, 1, 2007, 93-104, MR 2374102
Reference: [16] Guseinov, G.Sh.: An expansion theorem for a Sturm-Liouville operator on semi-unbounded time scales.Adv. Dyn. Syst. Appl., 3, 1, 2008, 147-160, MR 2547666
Reference: [17] Hahn, W.: Über orthogonalpolynome, die $q$-Differenzengleichungen genügen.Math. Nachr., 2, 1949, 4-34, MR 0030647, 10.1002/mana.19490020103
Reference: [18] Hahn, W.: Ein Beitrag zur Theorie der Orthogonalpolynome.Monatsh. Math., 95, 1983, 19-24, MR 0697345, 10.1007/BF01301144
Reference: [19] Hamza, A.E., Ahmed, S.A.: Existence and uniqueness of solutions of Hahn difference equations.Adv. Difference Equat., 316, 2013, 1-15, MR 3337265
Reference: [20] Hamza, A.E., Makharesh, S.D.: Leibniz' rule and Fubinis theorem associated with Hahn difference operator.J. Adv. Math., 12, 6, 2016, 6335-6345, 10.24297/jam.v12i6.3836
Reference: [21] Huseynov, A., Bairamov, E.: On expansions in eigenfunctions for second order dynamic equations on time scales.Nonlinear Dyn. Syst. Theory, 9, 1, 2009, 77-88, MR 2510666
Reference: [22] Huseynov, A.: Eigenfunction expansion associated with the one-dimensional Schrödinger equation on semi-infinite time scale intervals.Rep. Math. Phys., 66, 2, 2010, 207-235, MR 2777355, 10.1016/S0034-4877(10)00026-1
Reference: [23] Jackson, F.H.: $q$-Difference equations.Amer. J. Math., 32, 1910, 305-314, MR 1506108, 10.2307/2370183
Reference: [24] Jagerman, D.L.: Difference Equations with Applications to Queues.2000, Dekker, New York, MR 1792377
Reference: [25] Jordan, C.: Calculus of Finite Differences, 3rd edn.1965, Chelsea, New York, MR 0183987
Reference: [26] Kolmogorov, A.N., Fomin, S.V.: Introductory Real Analysis. Translated by R.A. Silverman.1970, Dover Publications, New York, MR 0377445
Reference: [27] Kwon, K.H., Lee, D.W., Park, S.B., Yoo, B.H.: Hahn class orthogonal polynomials.Kyungpook Math. J., 38, 1998, 259-281, MR 1665852
Reference: [28] Lesky, P.A.: Eine Charakterisierung der klassischen kontinuierlichen, diskretenund $q$-Orthgonalpolynome.2005, Shaker, Aachen,
Reference: [29] Levinson, N.: A simplified proof of the expansion theorem for singular second order linear differential equations.Duke Math. J., 18, 1951, 57-71, MR 0041313, 10.1215/S0012-7094-51-01806-6
Reference: [30] Levitan, B.M., Sargsjan, I.S.: Sturm-Liouville and Dirac Operators.1991, Springer, MR 1136037
Reference: [31] Naimark, M.A.: Linear Differential Operators, 2nd edn., 1968.1969, Nauka, Moscow, English translation of 1st edn.. MR 0353061
Reference: [32] Petronilho, J.: Generic formulas for the values at the singular points of some special monic classical $H_{q,\omega }$-orthogonal polynomials..J. Comput. Appl. Math., 205, 2007, 314-324, MR 2324843, 10.1016/j.cam.2006.05.005
Reference: [33] Sitthiwirattham, T.: On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different $q,\omega $-derivatives.Adv. Difference Equat., 2016, 1, 2016, Article number 116. MR 3490997
Reference: [34] Stone, M.H.: A comparison of the series of Fourier and Birkhoff.Trans. Amer. Math. Soc., 28, 1926, 695-761, MR 1501372, 10.1090/S0002-9947-1926-1501372-6
Reference: [35] Stone, M.H.: Linear Transformations in Hilbert Space and Their Application to Analysis.1932, Amer. Math. Soc., MR 1451877
Reference: [36] Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I. Second Edition.1962, Clarendon Press, Oxford, MR 0176151
Reference: [37] Weyl, H.: Über gewöhnlicke Differentialgleichungen mit Singuritaten und die zugehörigen Entwicklungen willkürlicher Funktionen.Math. Annal., 68, 1910, 220-269, MR 1511560, 10.1007/BF01474161
Reference: [38] Yosida, K.: On Titchmarsh-Kodaira formula concerning Weyl-Stone eingenfunction expansion.Nagoya Math. J., 1, 1950, 49-58, MR 0042016, 10.1017/S0027763000022820
Reference: [39] Yosida, K.: Lectures on Differential and Integral Equations.1960, Springer, New York, MR 0118869
.

Files

Files Size Format View
ActaOstrav_28-2020-1_2.pdf 329.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo