Previous |  Up |  Next

Article

Title: Locally functionally countable subalgebra of $\mathcal{R}(L)$ (English)
Author: Elyasi, M.
Author: Estaji, A. A.
Author: Robat Sarpoushi, M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 3
Year: 2020
Pages: 127-140
Summary lang: English
.
Category: math
.
Summary: Let $L_c(X)= \lbrace f \in C(X) \colon \overline{C_f}= X\rbrace $, where $C_f$ is the union of all open subsets $U \subseteq X$ such that $\vert f(U) \vert \le \aleph _0$. In this paper, we present a pointfree topology version of $L_c(X)$, named $\mathcal{R}_{\ell c}(L)$. We observe that $\mathcal{R}_{\ell c}(L)$ enjoys most of the important properties shared by $\mathcal{R}(L)$ and $\mathcal{R}_c(L)$, where $\mathcal{R}_c(L)$ is the pointfree version of all continuous functions of $C(X)$ with countable image. The interrelation between $\mathcal{R}(L)$, $\mathcal{R}_{\ell c}(L)$, and $\mathcal{R}_c(L)$ is examined. We show that $L_c(X) \cong \mathcal{R}_{\ell c}\big (\mathfrak{O}(X)\big )$ for any space $X$. Frames $L$ for which $\mathcal{R}_{\ell c}(L)=\mathcal{R}(L)$ are characterized. (English)
Keyword: functionally countable subalgebra
Keyword: locally functionally countable subalgebra
Keyword: sublocale
Keyword: frame
MSC: 06D22
MSC: 54C05
MSC: 54C30
idZBL: Zbl 07250674
idMR: MR4156440
DOI: 10.5817/AM2020-3-127
.
Date available: 2020-09-02T08:48:26Z
Last updated: 2020-11-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148290
.
Reference: [1] Azarpanah, F., Karamzadeh, O.A.S., Keshtkar, Z., Olfati, A.R.: On maximal ideals of $C_c(X)$ and the uniformity of its localizations.Rocky Mountain J. Math. 48 (2) (2018), 354–384, http://doi.org/10.1216/RMJ-2018-48-2-345. MR 3809150, 10.1216/RMJ-2018-48-2-345
Reference: [2] Ball, R.N., Walters-Wayland, J.: $\text{C}$- and $\text{C}^*$- quotients in pointfree topology.Dissertationes Math. (Rozprawy Mat.) 412 (2002), 354–384. MR 1952051
Reference: [3] Banaschewski, B.: The real numbers in pointfree topology.Textos de Mathemática (Séries B), Universidade de Coimbra, Departamento de Mathemática, Coimbra 12 (1997), 1–96. Zbl 0891.54009, MR 1621835
Reference: [4] Bhattacharjee, P., Knox, M.L., Mcgovern, W.W.: The classical ring of quotients of $C_c(X)$.Appl. Gen. Topol. 15 (2) (2014), 147–154, https://doi.org/10.4995/agt.2014.3181. MR 3267269, 10.4995/agt.2014.3181
Reference: [5] Dowker, C.H.: On Urysohn’s lemma.General Topology and its Relations to Modern Analysis, Proceedings of the second Prague topological symposium, 1966, Academia Publishing House of the Czechoslovak Academy of Sciences, Praha, 1967, pp. 111–114. MR 0238744
Reference: [6] Estaji, A.A., Karimi Feizabadi, A., Robat Sarpoushi, M.: $z_c$-ideals and prime ideals in the ring $\mathcal{R}_c L$.Filomat 32 (19) (2018), 6741–6752, https://doi.org/10.2298/FIL1819741E. MR 3899307, 10.2298/FIL1819741E
Reference: [7] Estaji, A.A., Karimi Feizabadi, A., Zarghani, M.: Zero elements and $z$-ideals in modified pointfree topology.Bull. Iranian Math. Soc. 43 (7) (2017), 2205–2226. MR 3885660
Reference: [8] Estaji, A.A., Robat Sarpoushi, M.: On $CP$-frames.submitted.
Reference: [9] Estaji, A.A., Robat Sarpoushi, M., Elyasi, M.: Further thoughts on the ring $\mathcal{R}_c(L)$ in frames.Algebra Universalis 80 (4) (2019), 14, https: //doi.org/10.1007/s00012-019-0619-z 4. MR 4027118, 10.1007/s00012-019-0619-z
Reference: [10] Ghadermazi, M., Karamzadeh, O.A.S., Namdari, M.: On the functionally countable subalgebra of $C(X)$.Rend. Semin. Mat. Univ. Padova 129 (2013), 47–69, https://doi.org/10.4171/RSMUP/129-4. MR 3090630, 10.4171/RSMUP/129-4
Reference: [11] Ghadermazi, M., Karamzadeh, O.A.S., Namdari, M.: $C(X)$ versus its functionally countable subalgebra.Bull. Iranian Math. Soc. 45 (2019), 173–187, https://doi.org/10.1007/s41980-018-0124-8. MR 3913987, 10.1007/s41980-018-0124-8
Reference: [12] Gillman, L., Jerison, M.: Rings of Continuous Functions.Springer-Verlag, 1976. Zbl 0327.46040, MR 0407579
Reference: [13] Johnstone, P.T.: Stone Spaces.Cambridge Univ. Press, Cambridge, 1982. Zbl 0499.54001, MR 0698074
Reference: [14] Karamzadeh, O.A.S., Keshtkar, Z.: On $c$-realcompact spaces.Quaest. Math. 42 (8) (2018), 1135–1167, https://doi.org/10.2989/16073606.2018.1441919. MR 3885948, 10.2989/16073606.2018.1441919
Reference: [15] Karamzadeh, O.A.S., Namdari, M., Soltanpour, S.: On the locally functionally countable subalgebra of $C(X)$.Appl. Gen. Topol. 16 (2015), 183–207, https://doi.org/10.4995/agt.2015.3445. MR 3411461, 10.4995/agt.2015.3445
Reference: [16] Karimi Feizabadi, A., Estaji, A.A., Robat Sarpoushi, M.: Pointfree version of image of real-valued continuous functions.Categ. Gen. Algebr. Struct. Appl. 9 (1) (2018), 59–75. MR 3833111
Reference: [17] Mehri, R., Mohamadian, R.: On the locally countable subalgebra of $C(X)$ whose local domain is cocountable.Hacet. J. Math. Stat. 46 (6) (2017), 1053–1068, http://doi.org/10.15672/HJMS.2017.435. MR 3751773, 10.15672/HJMS.2017.435
Reference: [18] Namdari, M., Veisi, A.: Rings of quotients of the subalgebra of $C(X )$ consisting of functions with countable image.Int. Math. Forum 7 (12) (2012), 561–571. MR 2969547
Reference: [19] Picado, J., Pultr, A.: Frames and Locales: Topology without Points.Frontiers in Mathematics, Birkhäuser/Springer, Basel AG, Basel, 2012. MR 2868166
Reference: [20] Robat Sarpoushi, M.: Pointfree topology version of continuous functions with countable image.Hakim Sabzevari University, Sabzevar, Iran (2017), Phd. Thesis.
.

Files

Files Size Format View
ArchMathRetro_056-2020-3_1.pdf 619.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo