Previous |  Up |  Next


networked control systems; false data injection attacks; switched systems; switched Stackelberg games; switched Stackelberg equilibrium
This paper is concerned with a security problem for a discrete-time linear networked control system of switched dynamics. The control sequence generated by a remotely located controller is transmitted over a vulnerable communication network, where the control input may be corrupted by false data injection attacks launched by a malicious adversary. Two partially conflicted cost functions are constructed as the quantitative guidelines for both the controller and the attacker, after which a switched Stackelberg game framework is proposed to analyze the interdependent decision-making processes. A receding-horizon switched Stackelberg strategy for the controller is derived subsequently, which, together with the corresponding best response of the attacker, constitutes the switched Stackelberg equilibrium. Furthermore, the asymptotic stability of the closed-loop system under the switched Stackelberg equilibrium is guaranteed if the switching signal exhibits a certain average dwell time. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method in this paper.
[1] Basar, T., Olsder, G. J.: Dynamic Noncooperative Game Theory. Siam, Philadelphia 1999. DOI 10.1137/1.9781611971132 | MR 1657965
[2] Dong, Y., Chen, J.: Finite-time outer synchronization between two complex dynamical networks with on-off coupling. Int. J. Modern Phys. C. 26 (2015), 8, 1550095. DOI 10.1142/s0129183115500953 | MR 3342134
[3] Ding, D., Han, Q.-L., Wang, Z., Ge, X.: A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Ind. Inf. 15 (2019), 5, 2483-2499. DOI 10.1109/tii.2019.2905295
[4] Engwerda, J.: LQ Dynamic Optimization and Differential Games. John Wiley and Sons, Chichester 2005.
[5] Garcia, E., Antsaklis, P.: Model-based event-triggered control for systems with quantization and time-varying network delays. IEEE Trans. Automat. Control 58 (2013), 2, 422-434. DOI 10.1109/tac.2012.2211411 | MR 3023933
[6] Ge, X., Han, Q.-L.: Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies. IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. DOI 10.1109/tcyb.2016.2570860
[7] Ge, X., Han, Q.-L., Wang, Z.: A threshold-parameter-dependent approach to designing distributed event-triggered $H_{\infty}$ consensus filters over sensor networks. IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. DOI 10.1109/tcyb.2017.2789296
[8] Ge, X., Han, Q.-L., Zhang, X.-M., Ding, L., Yang, F.: Distributed event-triggered estimation over sensor networks: A survey. IEEE Trans. Cybernet. 50 (2019), 3, 1306-1320. DOI 10.1109/tcyb.2019.2917179
[9] Ge, X., Han, Q.-L., Zhong, M., Zhang, X.-M.: Distributed Krein space-based attack detection over sensor networks under deception attacks. Automatica 109 (2019), 108557, 108557. DOI 10.1016/j.automatica.2019.108557 | MR 3998774
[10] Hespanha, J. P., Morse, A. S.: Stability of switched systems with average dwell-time. In: Proc. 38th IEEE Conf. Decision Control 1999, pp. 2655-2660. DOI 10.1109/cdc.1999.831330
[11] Hu, L., Wang, Z., Han, Q.-L., Liu, X.: State estimation under false data injection attacks: Security analysis and system protection. Automatica 87 (2018), 176-183. DOI 10.1016/j.automatica.2017.09.028 | MR 3733913
[12] Hu, S., Yue, D., Han, Q.-L., Xie, X., Chen, X., Dou, C.: Observer-based event-triggered control for networked linear systems subject to denial-of-service attacks. IEEE Trans. Cybernet. 50 (2019), 5, 1952-1964. DOI 10.1109/tcyb.2019.2903817 | MR 3632431
[13] Li, Y., Quevedo, D. E., Dey, S., Shi, L.: SINR-based dos attack on remote state estimation: A game-theoretic approach. IEEE Trans. Control Netw. Syst. 4 (2017), 632-642. DOI 10.1109/tcns.2016.2549640 | MR 3704405
[14] Li, Y., Shi, D., Chen, T.: False data injection attacks on networked control systems: A Stackelberg game analysis. IEEE Trans. Automat. Control 63 (2018), 3503-3509. DOI 10.1109/tac.2018.2798817 | MR 3866256
[15] Li, Y., Shi, L., Cheng, P., Chen, J., Quevedo, D. .E.: Jamming attacks on remote state estimation in cyber-physical systems: A game-theoretic approach. IEEE Trans. Automat. Control 60 (2015), 2831-2836. DOI 10.1109/tac.2015.2461851 | MR 3406006
[16] Liberzon, D.: Switching in Systems and Control. Birkhauser, Boston 2003. DOI 10.1007/978-1-4612-0017-8 | MR 1987806 | Zbl 1036.93001
[17] Liu, B., Hill, D. J., Sun, Z.: Input-to-state-kl-stability and criteria for a class of hybrid dynamical systems. Appl. Math. Comput. 326 (2018), 124-140. DOI 10.1016/j.amc.2018.01.002 | MR 3759462
[18] Liu, B., Hill, D. J., Sun, Z.: Input-to-state exponents and related iss for delayed discrete-time systems with application to impulsive effects. Int. J. Robust Nonlinear Control 28 (2018), 640-660. DOI 10.1002/rnc.3891 | MR 3747950
[19] Long, L.: Stabilization by forwarding design for switched feedforward systems with unstable modes. Int. J. Robust Nonlinear Control 27 (2017), 4808-4824. DOI 10.1002/rnc.3832 | MR 3733698
[20] Long, L.: Multiple Lyapunov functions-based small-gain theorems for switched interconnected nonlinear systems. IEEE Trans. Automat. Control 62 (2017), 3943-3958. DOI 10.1109/tac.2017.2648740 | MR 3684329
[21] Long, L., Si, T.: Small-gain technique-based adaptive nn control for switched pure-feedback nonlinear systems. IEEE Trans. Cybernet. 49 (2019), 1873-1884. DOI 10.1109/tcyb.2018.2815714
[22] Rubio, S. J.: On coincidence of feedback Nash equilibria and Stackelberg equilibria in economic applications of differential games. J. Optim. Theory Appl. 128 (2006), 203-220. DOI 10.1007/s10957-005-7565-y | MR 2201896
[23] Sun, X.-M., Liu, G.-P., Rees, D., Wang, W.: Delay-dependent stability for discrete systems with large delay sequence based on switching techniques. Automatica 44 (2008), 2902-2908. DOI 10.1016/j.automatica.2008.04.006 | MR 2527214
[24] Sun, X.-M., Wang, W.: Integral input-to-state stability for hybrid delayed systems with unstable continuous dynamics. Automatica 48 (2012), 2359-2364. DOI 10.1016/j.automatica.2012.06.056 | MR 2956919
[25] Sun, X., Wu, D., Liu, G., Wang, W.: Input-to-state stability for networked predictive control with random delays in both feedback and forward channels. IEEE Trans. Ind. Electron. 61 (2014), 3519-3526. DOI 10.1109/tie.2013.2278953
[26] Sun, X.-M., Zhao, J., Hill, D. J.: Stability and l2-gain analysis for switched delay systems: A delay-dependent method. Automatica 42 (2006), 1769-1774. DOI 10.1016/j.automatica.2006.05.007 | MR 2249722
[27] Wang, X., Lemmon, M.: Event-triggering in distributed networked control systems. IEEE Trans. Automat. Control 56 (2011), 3, 586-601. DOI 10.1109/tac.2010.2057951 | MR 2799075
[28] Wu, J., Chen, T.: Design of networked control systems with packet dropouts. IEEE Trans. Automat. Control 52 (2007), 1314-1319. DOI 10.1109/tac.2007.900839 | MR 2332758
[29] Xiao, S., Han, Q.-L., Ge, X., Zhang, Y.: Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks. IEEE Trans. Cybernet. 50 (2019), 3, 1220-1229. DOI 10.1109/tcyb.2019.2900478
[30] Xu, X., Antsaklis, P. J.: Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans. Automat. Control 49 (2004), 2-16. DOI 10.1109/tac.2003.821417 | MR 2028538
[31] You, K., Li, Z., Xie, L.: Consensus condition for linear multi-agent systems over randomly switching topologies. Automatica 49 (2013), 10, 3125-3132. DOI 10.1016/j.automatica.2013.07.024 | MR 3092665
[32] Zhang, L., Gao, H., Kaynak, O.: Network-induced constraints in networked control systems - A survey. IEEE Trans. Ind. Inf. 9 (2013), 1, 403-416. DOI 10.1109/tii.2012.2219540
[33] Zhang, X.-M., Han, Q.-L., Yu, X.: Survey on recent advances in networked control systems. IEEE Trans. Ind. Inf. 12 (2016), 5, 1740-1752. DOI 10.1109/tii.2015.2506545 | MR 3588201
[34] Zhang, Y., Tian, Y.-P.: Consentability and protocol design of multi-agent systems with stochastic switching topology. Automatica 45 (2009), 5, 1195-1201. DOI 10.1016/j.automatica.2008.11.005 | MR 2531593
[35] Zhao, J., Hill, D. J.: Dissipativity theory for switched systems. IEEE Trans. Automat. Control 53 (2008), 941-953. DOI 10.1109/tac.2008.920237 | MR 2419441
[36] Zhao, J., Hill, D. J., Liu, T.: tability of dynamical networks with non-identical nodes: A multiple $V$-Lyapunov function method. Automatica 47 (2011), 2615-2625. DOI 10.1016/j.automatica.2011.09.012 | MR 2886930
[37] Zhu, M., Martínez, S.: Stackelberg-game analysis of correlated attacks in cyber-physical systems. In: Proc. Amer. Control Conf. 2011, pp. 4063-4068. DOI 10.1109/acc.2011.5991463
Partner of
EuDML logo