Previous |  Up |  Next


networked control systems; optimal control; stochastic communication protocol; markov chain
This paper is concerned with the finite and infinite horizon optimal control issue for a class of networked control systems with stochastic communication protocols. Due to the limitation of networked bandwidth, only the limited number of sensors and actuators are allowed to get access to network mediums according to stochastic access protocols. A discrete-time Markov chain with a known transition probability matrix is employed to describe the scheduling behaviors of the stochastic access protocols, and the networked systems are modeled as a Markov jump system based on the augmenting technique. In such a framework, both the approaches of stochastic analysis and dynamic programming are utilized to derive the optimal control sequences satisfying the quadratic performance index. Moreover, the optimal controller gains are characterized by solving the solutions to coupled algebraic Riccati equations. Finally, a numerical example is provided to demonstrate the correctness and effectiveness of the proposed results.
[1] Hespanha, J. P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proc. IEEE 95 (2007), 138-162. DOI 
[2] Zhang, X.-M., Han, Q.-L., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C.: Networked control systems: A survey of trends and techniques. IEEE/CAA J. Automat. Sinica (2019). DOI  | MR 3841465
[3] Ding, D., Han, Q.-L., Wang, Z., Ge, X.: A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform. 15 (2019), 2483-2499. DOI 
[4] Ding, L., Han, Q.-L., Zhang, X.-M.: Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism. IEEE Trans. Industr. Inform. 15 (2019), 3910-3922. DOI 
[5] Shu, S., Lin, F.: Deterministic networked control of discrete event systems with nondeterministic communication delays. IEEE Trans. Automat. Control 62 (2017), 190-205. DOI  | MR 3598003
[6] Ge, X., Han, Q.-L., Zhang, X.-M., Ding, L., Yang, F.: Distributed event-triggered estimation over sensor networks: A survey. IEEE Trans. Cybernet. (2019). DOI 
[7] Song, H., and, S.-C. Chen, Yam, Y.: Sliding mode control for discrete-time systems with markovian packet dropouts. IEEE Trans. Cybernet. 47 (2017), 3669-3679. DOI 
[8] Okano, K., Wakaiki, M., Yang, G., Hespanha, J. P.: Stabilization of networked control systems under clock offsets and quantization. IEEE Trans. Automat. Control 63 (2018), 1708-1723. DOI  | MR 3805143
[9] Ding, L., Han, Q.-L., Ge, X., Zhang, X.-M.: An overview of recent advances in event-triggered consensus of multi-agent systems. IEEE Trans. Cybernet. 48 (2018), 1110-1123. DOI  | MR 3554944
[10] Han, Q.-L., Liu, Y., Yang, F.: Optimal communication network-based ${{\rm{H}}_\infty }$ quantized control with packet dropouts for a class of discrete-time neural networks with distributed time delay. IEEE Trans. Neural Networks Learning Syst. 27 (2016), 426-434. DOI  | MR 3463952
[11] Xue, B., Li, N., Li, S., Zhu, Q.: Moving horizon scheduling for networked control systems with communication constraints. IEEE Trans. Industr. Electron. 60 (2013), 3318-3327. DOI 
[12] Liu, K., Fridman, E., Hetel, L.: Stability and ${{\rm{L}}_2 }$-gain analysis of networked control systems under round-robin scheduling: A time-delay approach. Systems Control Lett. 61 (2012), 666-675. DOI  | MR 2913495
[13] Zhang, L., Hristu-Varsakelis, D.: Communication and control co-design for networked control systems. Automatica 42 (2006), 953-958. DOI  | MR 2227598
[14] Longo, S., Herrmann, G., Barber, P.: Robust scheduling of sampled-data networked control systems. IEEE Trans. Control Systems Technol. 20 (2012), 1613-1621. DOI 
[15] Hristu-Varsakelis, D., Zhang, L.: LQG control of networked control systems with access constraints and delays. Int. J. Control 81 (2008), 1266-1280. DOI  | MR 2424496
[16] Zhang, W.-A., Yu, L., Feng, G.: Optimal linear estimation for networked systems with communication constraints. Automatica 47 (2011), 1992-2000. DOI  | MR 2886812
[17] Walsh, G. C., Ye, H., Bushnell, L. G.: Stability analysis of networked control systems. IEEE Trans. Control Systems Technol. 10 (2002), 438-446. DOI 
[18] Guo, G., Jin, H.: A switching system approach to actuator assignment with limited channels. Int. J. Robust Nonlinear Control 20 (2010), 140-1426. DOI  | MR 2680715
[19] Guo, G.: A switching system approach to sensor and actuator assignment for stabilization via limited multi-packet transmitting channels. Int. J. Control 84 (2011), 78-93. DOI  | MR 2773880
[20] Zhang, W.-A., Yu, L., Feng, G.: Stabilization of linear discrete-time networked control systems via protocol and controller co-design. Int. J. Robust Nonlinear Control 25 (2015), 3072-3085. DOI  | MR 3415520
[21] Zou, L., Wang, Z., Han, Q.-L., Zhou, D.: Ultimate boundedness control for networked systems with try-once-discard protocol and uniform quantization effects. IEEE Trans. Automat. Control 62 (2017), 6582-6588. DOI  | MR 3743543
[22] Guo, G., Lu, Z., Han, Q.-L.: Control with Markov sensors/actuators assignment. IEEE Trans. Automat. Control 57 (2012), 1799-1804. DOI  | MR 2945943
[23] Zou, L., Wang, Z., Han, Q.-L., Zhou, D.: Recursive filtering for time-varying systems with random access protocol. IEEE Trans. Automat. Control 64 (2019), 720-727. DOI  | MR 3912120
[24] Zhu, C., Guo, G., Yang, B., Wang, Z.: Networked optimal control with random medium access protocol and packet dropouts. Math. Problems Engrg. 2015 (2015), 1-11. DOI  | MR 3319209
[25] Zou, L., Wang, Z., Gao, H.: Observer-based ${{\rm{H}}_\infty }$ control of networked systems with stochastic communication protocol: The finite-horizon case. Automatica 63 (2016), 366-373. DOI  | MR 3430004
[26] Zhang, J., Peng, C., Fei, M.-R., Tian, Y.-C.: Output feedback control of networked systems with a stochastic communication protocol. J. Franklin Inst. 354 (2017), 3838-3853. DOI  | MR 3649255
[27] Ding, D., Wang, Z., Han, Q.-L.: Neural-network-based output-feedback control with stochastic communication protocols. Automatica 106 (2019), 221-229. DOI  | MR 3952583
[28] Long, Y., Liu, S., Xie, L.: Stochastic channel allocation for networked control systems. IEEE Control Systems Lett. 1 (2017), 176-181. DOI 
[29] Donkers, M. C. F., Heemels, W. P. M. H., Bernardini, D., Bemporad, A., Shneer, V.: Stability analysis of stochastic networked control systems. Automatica 48 (2012), 917-925. DOI  | MR 2912818
[30] Xu, Y., Su, H., Pan, Y.-J., Wu, Z.-G., Xu, W.: Stability analysis of network control systems with round-robin scheduling and packet dropouts. J. Franklin Inst. 350 (2013), 2013-2027. DOI  | MR 3084055
[31] Yaz, E.: Control of randomly varying systems with prescribed degree of stability. IEEE Trans. Automat. Control 33 (1988), 407-410. DOI 
[32] Running, K. D., Martins, N. C.: Optimal preview control of Markovian jump linear systems. IEEE Trans. Automat. Control 54 (2009), 2260-2266. DOI  | MR 2568681
[33] Costa, O. L. V., Marques, R. P.: Maximal and stabilizing hermitian solutions for discrete-time coupled algebraic Riccati equations. Math. Control Signals Syst. 12 (1999), 167-195. DOI  | MR 1692164
[34] Yang, F., Wang, Z., Hung, Y. S., Gani, M.: ${{\rm{H}}_\infty }$ control for networked systems with random communication delays. IEEE Trans. Automat. Control 51 (2006), 511-518. DOI  | MR 2205692
[35] Guo, G., Lu, Z.: Markov actuator assignment for networked control systems. Euroup. J. Control 18 (2012), 323-330. DOI  | MR 3012037
Partner of
EuDML logo