| Title:
             | 
Delay-dependent stability of linear multi-step methods for linear neutral systems (English) | 
| Author:
             | 
Hu, Guang-Da | 
| Author:
             | 
Shao, Lizhen | 
| Language:
             | 
English | 
| Journal:
             | 
Kybernetika | 
| ISSN:
             | 
0023-5954 (print) | 
| ISSN:
             | 
1805-949X (online) | 
| Volume:
             | 
56 | 
| Issue:
             | 
3 | 
| Year:
             | 
2020 | 
| Pages:
             | 
543-558 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper, we are concerned with numerical methods for linear neutral systems with multiple delays. For delay-dependently stable neutral systems, we ask what conditions must be imposed on linear multi-step methods in order that the numerical solutions display stability property analogous to that displayed by the exact solutions. Combining with Lagrange interpolation, linear multi-step methods can be applied to the neutral systems. Utilizing the argument principle, a sufficient condition is derived for linear multi-step methods with preserving delay-dependent stability. Numerical examples are given to illustrate the main results. (English) | 
| Keyword:
             | 
neutral systems with multiple delays | 
| Keyword:
             | 
delay-dependent stability | 
| Keyword:
             | 
linear multi-step method | 
| Keyword:
             | 
Lagrange interpolation | 
| Keyword:
             | 
argument principle | 
| MSC:
             | 
65L05 | 
| MSC:
             | 
65L07 | 
| MSC:
             | 
65L20 | 
| idZBL:
             | 
Zbl 07250736 | 
| idMR:
             | 
MR4131742 | 
| DOI:
             | 
10.14736/kyb-2020-3-0543 | 
| . | 
| Date available:
             | 
2020-09-02T09:25:43Z | 
| Last updated:
             | 
2021-02-23 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/148313 | 
| . | 
| Reference:
             | 
[1] Aleksandrov, A. Y., Hu, G. D., Zhabko, A. P.: Delay-independent stability conditions for some classes of nonlinear systems..IEEE Trans. Automat. Control 59 (2014), 2209-2214. MR 3245263, 10.1109/tac.2014.2299012 | 
| Reference:
             | 
[2] Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations..Oxford University Press, Oxford 2003. MR 1997488, 10.1093/acprof:oso/9780198506546.001.0001 | 
| Reference:
             | 
[3] Brown, J. W., Churchill, R. V.: Complex Variables and Applications..McGraw-Hill Companies, Inc. and China Machine Press, Beijing 2004. MR 0112948 | 
| Reference:
             | 
[4] Fridman, E.: Introduction to Time-Delay Systems: Analysis and Control..Birkhäuser, New York 2014. MR 3237720, 10.1007/978-3-319-09393-2 | 
| Reference:
             | 
[5] Hale, J. K., Lunel, S. M. Verduyn: Strong stabilization of neutral functional differential equations..IMA J. Math. Control Inform. 19 (2002), 5-23. MR 1899001, 10.1093/imamci/19.1_and_2.5 | 
| Reference:
             | 
[6] Han, Q. L.: Stability criteria for a class of linear neutral systems with time-varying discrete and distributed delays..IMA J. Math. Control Inform. 20 (2003), 371-386. MR 2028146, 10.1093/imamci/20.4.371 | 
| Reference:
             | 
[7] Hu, G. D.: Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays..Kybernetika 54 (2018), 718-735. MR 3863252, 10.14736/kyb-2018-4-0718 | 
| Reference:
             | 
[8] Hu, G. D., Cahlon, B.: Estimations on numerically stable step-size for neutral delay differential systems with multiple delays..J. Compt. Appl. Math. 102 (1999), 221-234. MR 1674027, 10.1016/s0377-0427(98)00215-5 | 
| Reference:
             | 
[9] Hu, G. D., Liu, M.: Stability criteria of linear neutral systems with multiple delays..IEEE Trans. Automat. Control 52 (2007), 720-724. MR 2310053, 10.1109/tac.2007.894539 | 
| Reference:
             | 
[10] Huang, C., Vandewalle, S.: An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays..SIAM J. Scientific Computing 25 (2004), 1608-1632. MR 2087328, 10.1137/s1064827502409717 | 
| Reference:
             | 
[11] Johnson, L. W., Riess, R. Dean, Arnold, J. T.: Introduction to Linear Algebra..Prentice-Hall, Englewood Cliffs 2000. | 
| Reference:
             | 
[12] Jury, E. I.: Theory and Application of $z$-Transform Method..John Wiley and Sons, New York 1964. | 
| Reference:
             | 
[13] Kim, A. V., Ivanov, A. V.: Multistep numerical methods for fuctional difefrential equations..Math. Comput. Simul. 45 (1998), 377-384. MR 1622949, 10.1016/s0378-4754(97)00117-1 | 
| Reference:
             | 
[14] Kolmanovskii, V. B., Myshkis, A.: Introduction to Theory and Applications of Functional Differential Equations..Kluwer Academic Publishers, Dordrecht 1999. MR 1680144, 10.1007/978-94-017-1965-0 | 
| Reference:
             | 
[15] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems..John Wiley and Sons, New York 1999. MR 1127425 | 
| Reference:
             | 
[16] Lancaster, P., Tismenetsky, M.: The Theory of Matrices with Applications..Academic Press, Orlando 1985. MR 0792300 | 
| Reference:
             | 
[17] Maset, S.: Instability of Runge-Kutta methods when applied to linear systems of delay differential equations..Numer. Math. 90 (2002), 555-562. MR 1884230, 10.1007/s002110100266 | 
| Reference:
             | 
[18] Medvedeva, I. V., Zhabko, A. P.: Synthesis of Razumikhin and Lyapunov-Krasovskii approaches to stability analysis of time-delay systems..Automatica 51 (2015), 372-377. MR 3284791, 10.1016/j.automatica.2014.10.074 | 
| Reference:
             | 
[19] Tian, H., Kuang, J.: The stability of the $\theta$-methods in numerical solution of delay differential equations with several delay terms..J. Comput. Appl. Math. 58 (1995), 171-181. MR 1343634, 10.1016/0377-0427(93)e0269-r | 
| Reference:
             | 
[20] Vyhlidal, T., Zitek, P.: Modification of Mikhaylov criterion for neutral time-delay systems..IEEE Trans. Automat. Control 54 (2009), 2430-2435. MR 2562848, 10.1109/tac.2009.2029301 | 
| . |