Previous |  Up |  Next

Article

Title: Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate (English)
Author: Cheng, Songsong
Author: Liang, Shu
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 3
Year: 2020
Pages: 559-577
Summary lang: English
.
Category: math
.
Summary: Distributed optimization over unbalanced graphs is an important problem in multi-agent systems. Most of literatures, by introducing some auxiliary variables, utilize the Push-Sum scheme to handle the widespread unbalance graph with row or column stochastic matrix only. But the introduced auxiliary dynamics bring more calculation and communication tasks. In this paper, based on the in-degree and out-degree information of each agent, we propose an innovative distributed optimization algorithm to reduce the calculation and communication complexity of the conventional Push-Sum scheme. Furthermore, with the aid of small gain theory, we prove the linear convergence rate of the proposed algorithm. (English)
Keyword: multi-agent systems
Keyword: distributed optimization
Keyword: unbalanced graph
Keyword: small gain theory
Keyword: linear convergence rate
MSC: 68W15
MSC: 90C33
idZBL: Zbl 07250737
idMR: MR4131743
DOI: 10.14736/kyb-2020-3-0559
.
Date available: 2020-09-02T09:27:20Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148314
.
Reference: [1] Cai, K., Ishii, H.: Average consensus on general strongly connected digraphs..Automatica 48 (2012), 2750-2761. Zbl 1252.93004, MR 2981359, 10.1016/j.automatica.2012.08.003
Reference: [2] Chang, T., Nedić, A., Scaglione, A.: Distributed constrained optimization by consensus-based primal-dual perturbation method..IEEE Trans. Automat. Control 59 (2014), 1524-1538. MR 3225227, 10.1109/TAC.2014.2308612
Reference: [3] Chen, C., Chan, R., Ma, S., Yang, J.: Inertial proximal ADMM for linearly constrained separable convex optimization..SIAM J. Imaging Sci. 8 (2015), 2239-2267. MR 3404682, 10.1137/15100463X
Reference: [4] Dominguez-Garcia, A., Hadjicostis, C.: Distributed matrix scaling and application to average consensus in directed graphs..IEEE Trans. Automat. Control 58 (2013), 667-681. MR 3029463, 10.1109/TAC.2012.2219953
Reference: [5] Duchi, J., Agarwal, A., Wainwright, M.: Dual averaging for distributed optimization: Convergence analysis and network scaling..IEEE Trans. Automat. Control 57 (2012), 592-606. MR 2932818, 10.1109/TAC.2011.2161027
Reference: [6] Gharesifard, B., Cortés, J.: Distributed strategies for generating weight-balanced and doubly stochastic digraphs..Europ. J. Control 18 (2012), 539-557. MR 3086897, 10.3166/EJC.18.539-557
Reference: [7] Gharesifard, B., Cortés, J., Jorge: Distributed continuous-time convex optimization on weight-balanced digraphs..IEEE Trans. Automat. Control 59 (2014), 781-786. MR 3188487, 10.1109/TAC.2013.2278132
Reference: [8] Loh, H.: On a class of directed graphswith an application to traffic-flow problems..Oper. Res. 18 (1970), 87-94. MR 0265219, 10.1287/opre.18.1.87
Reference: [9] Halabian, H.: Distributed Resource Allocation Optimization in 5G Virtualized Networks..IEEE J. Selected Areas Commun. 37 (2019), 627-642. 10.1109/JSAC.2019.2894305
Reference: [10] Jian, L., Hu, J., Wang, J. W., Shi, K.: Distributed inexact dual consensus ADMM for network resource allocation..Optimal Control, Appl. Methods 40 (2019), 6, 1071-1087. MR 4028355, 10.1002/oca.2538
Reference: [11] Jian, L., Zhao, Y., Hu, J., Li, P.: Distributed inexact consensus-based ADMM method for multi-agent unconstrained optimization problem..IEEE Access 7 (2019), 1, 79311-79319. 10.1109/ACCESS.2019.2923269
Reference: [12] Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information..44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings. (2003), 482-491. 10.1109/SFCS.2003.1238221
Reference: [13] Liang, S., Zeng, X., Hong, Y.: Distributed nonsmooth optimization with coupled inequality constraints via modified lagrangian function..IEEE Trans. Automat. Control 63 (2018), 1753-1759. MR 3807659, 10.1109/TAC.2017.2752001
Reference: [14] Liang, S., Wang, L., Yin, G.: Distributed quasi-monotone subgradient algorithm for nonsmooth convex optimization over directed graphs..Automatica 101 (2019), 175-181. MR 3891993, 10.1016/j.automatica.2018.11.056
Reference: [15] Liang, S., Wang, L., Yin, G.: Exponential convergence of distributed primal-dual convex optimization algorithm without strong convexity.
Reference: [16] Lin, P., Peng, Wang, Y., Qi, H., Hong, Y.: Distributed consensus-based K-means algorithm in switching multi-agent networks.
Reference: [17] Liu, S., Qiu, Z., Xie, L.: Convergence rate analysis of distributed optimization with projected subgradient algorithm..Automatica 83 (2017), 162-169. MR 3680426, 10.1016/j.automatica.2017.06.011
Reference: [18] Nedić, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization..IEEE Trans. Automat. Control. 54 (2009), 48-61. MR 2478070, 10.1109/TAC.2008.2009515
Reference: [19] Nedić, A., Ozdaglar, A., Parrilo, P. A.: Constrained consensus and optimization in multi-agent networks..IEEE Trans. Automat. Control. 55 (2010), 922-938. MR 2654432, 10.1109/TAC.2010.2041686
Reference: [20] Nedić, A., Olshevsky, A.: Stochastic gradient-push for strongly convex functions on time-varying directed graphs..IEEE Trans. Automat. Control 61 (2016), 3936-3947. MR 3582505, 10.1109/TAC.2016.2529285
Reference: [21] Nedić, A., Olshevsky, A., Shi, W.: Achieving geometric convergence for distributed optimization over time-varying graphs..SIAM J. Optim. 27 (2017), 2597-2633. MR 3738851, 10.1137/16M1084316
Reference: [22] Shi, G., Anderson, B. D., Helmke, U.: Network flows that solve linear equations..IEEE Trans. Automat. Control. 62 (2017), 2659-2674. MR 3660554, 10.1109/TAC.2016.2612819
Reference: [23] Shi, W., Ling, Q., Wu, G., Yin, W.: Extra: An exact first-order algorithm for decentralized consensus optimization..SIAM J. Optim. 25 (2015), 944-966. MR 3343366, 10.1137/14096668X
Reference: [24] Tsianos, K. I., Lawlor, S., Rabbat, M. G.: Push-sum distributed dual averaging for convex optimization..In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 2012, pp. 5453-5458. 10.1109/CDC.2012.6426375
Reference: [25] Tsianos, K. I., Rabbat, M. G.: Distributed dual averaging for convex optimization under communication delays..In: 2012 American Control Conference (ACC) 2012, pp. 1067-1072. 10.1109/ACC.2012.6315289
Reference: [26] Xi, C., Khan, U. A.: On the linear convergence of distributed optimization over directed graphs..arXiv preprint arXiv:1510.02149 (2015).
Reference: [27] Xi, C., Khan, U. A.: Distributed subgradient projection algorithm over directed graphs..IEEE Trans. Automat. Control 62 (2017), 3986-3992. MR 3684332, 10.1109/TAC.2016.2615066
Reference: [28] Xin, R., Xi, C., Khan, U. A.: Distributed Subgradient Projection Algorithm over Directed Graphs: Alternate Proof..arXiv preprint arXiv:1706.07707 (2017). MR 3684332
Reference: [29] Xin, R., Xi, C., Khan, U. A.: FROST-Fast row-stochastic optimization with uncoordinated step-sizes..EURASIP J. Advances Signal Process. 1 (2019), 1-14. 10.1186/s13634-018-0596-y
Reference: [30] Yang, T., George, J., Qin, J., Yi, X., Wu, J.: Distributed finite-time least squares solver for network linear equations..arXiv preprint arXiv:1810.00156(2018). MR 4047486
Reference: [31] Yi, P., Hong, Y., F., Liu: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and its application to economic dispatch of power systems..Automatica 74 (2016), 259-269. MR 3569392, 10.1016/j.automatica.2016.08.007
Reference: [32] Yuan, D., Proutiere, A., Shi, G.: Distributed Online Linear Regression..arXiv preprint arXiv:1902.04774.
Reference: [33] Zeng, X., Yi, P., Hong, Y.: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach..IEEE Trans. Automat. Control 62 (2017), 5227-5233. MR 3708893, 10.1109/TAC.2016.2628807
.

Files

Files Size Format View
Kybernetika_56-2020-3_8.pdf 1.627Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo