Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
formal matrix ring; bimodule; system of factors; Wedderburn-Artin theorem
Summary:
We investigate the formal matrix ring over $R$ defined by a certain system of factors. We give a method for constructing formal matrix rings from non-negative integer matrices. We also show that the principal factor matrix of a binary system of factors determine the structure of the system.
References:
[1] Abyzov, A. N., Tapkin, D. T.: Formal matrix rings and their isomorphisms. Sib. Math. J. 56 (2015), 955-967 translated from Sib. Mat. Zh. 56 2015 1199-1214. DOI 10.1134/S0037446615060014 | MR 3492900 | Zbl 1338.16032
[2] Abyzov, A. N., Tapkin, D. T.: On certain classes of rings of formal matrices. Russ. Math. 59 (2015), 1-12 translated from Izv. Vyssh. Uchebn. Zaved., Mat. 2015 2015 3-14. DOI 10.3103/S1066369X15030019 | MR 3374336 | Zbl 1321.16018
[3] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511623608 | MR 1314422 | Zbl 0834.16001
[4] Varadarajan, A. Haghany K.: Study of formal triangular matrix rings. Commun. Algebra 27 (1999), 5507-5525. DOI 10.1080/00927879908826770 | MR 1713049 | Zbl 0941.16005
[5] Varadarajan, A. Haghany K.: Study of modules over formal triangular matrix rings. J. Pure Appl. Algebra 147 (2000), 41-58. DOI 10.1016/S0022-4049(98)00129-7 | MR 1744654 | Zbl 0951.16009
[6] Krylov, P. A.: Isomorphism of generalized matrix rings. Algebra Logic 47 (2008), 258-262 translated from Algebra Logika 47 2008 456-463. DOI 10.1007/s10469-008-9016-y | MR 2484564 | Zbl 1155.16302
[7] Krylov, P. A.: Injective modules over formal matrix rings. Sib. Math. J. 51 (2010), 72-77 translated from Sib. Mat. Zh. 51 2010 90-97. DOI 10.1007/s11202-010-0009-4 | MR 2654524 | Zbl 1214.16004
[8] Krylov, P. A., Tuganbaev, A. A.: Modules over formal matrix rings. J. Math. Sci., New York 171 (2010), 248-295 translated from Fundam. Prikl. Mat. 15 2009 145-211. DOI 10.1007/s10958-010-0133-5 | MR 2745016 | Zbl 1283.16025
[9] Krylov, P. A., Tuganbaev, A. A.: Formal matrices and their determinants. J. Math. Sci., New York 211 (2015), 341-380 translated from Fundam. Prikl. Mat. 19 2014 65-119. DOI 10.1007/s10958-015-2610-3 | MR 3431871 | Zbl 1333.15004
[10] Lam, T. Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics 189. Springer, New York (1999). DOI 10.1007/978-1-4612-0525-8 | MR 1653294 | Zbl 0911.16001
[11] Morita, K.: Duality for modules and its applications to the theory of rings with minimum conditions. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6 (1958), 83-142. MR 0096700 | Zbl 0080.25702
[12] Müller, M.: Rings of quotients of generalized matrix rings. Commun. Algebra 15 (1987), 1991-2015. DOI 10.1080/00927878708823519 | MR 0909950 | Zbl 0629.16013
[13] Nicholson, W. K., Watters, J. F.: Classes of simple modules and triangular rings. Commun. Algebra 20 (1992), 141-153. DOI 10.1080/00927879208824336 | MR 1145330 | Zbl 0751.16001
[14] Tang, G., Li, C., Zhou, Y.: Study of Morita contexts. Commun. Algebra 42 (2014), 1668-1681. DOI 10.1080/00927872.2012.748327 | MR 3169661 | Zbl 1292.16020
[15] Tang, G., Zhou, Y.: Strong cleanness of generalized matrix rings over a local ring. Linear Algebra Appl. 437 (2012), 2546-2559. DOI 10.1016/j.laa.2012.06.035 | MR 2964706 | Zbl 1258.16032
[16] Tang, G., Zhou, Y.: A class of formal matrix rings. Linear Algebra Appl. 438 (2013), 4672-4688. DOI 10.1016/j.laa.2013.02.019 | MR 3039217 | Zbl 1283.16026
Partner of
EuDML logo