Title:
|
On the binary system of factors of formal matrix rings (English) |
Author:
|
Chen, Weining |
Author:
|
Deng, Guixin |
Author:
|
Su, Huadong |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
70 |
Issue:
|
3 |
Year:
|
2020 |
Pages:
|
693-709 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate the formal matrix ring over $R$ defined by a certain system of factors. We give a method for constructing formal matrix rings from non-negative integer matrices. We also show that the principal factor matrix of a binary system of factors determine the structure of the system. (English) |
Keyword:
|
formal matrix ring |
Keyword:
|
bimodule |
Keyword:
|
system of factors |
Keyword:
|
Wedderburn-Artin theorem |
MSC:
|
15B99 |
MSC:
|
16S50 |
idZBL:
|
07250683 |
idMR:
|
MR4151699 |
DOI:
|
10.21136/CMJ.2020.0464-18 |
. |
Date available:
|
2020-09-07T09:35:54Z |
Last updated:
|
2022-10-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148322 |
. |
Reference:
|
[1] Abyzov, A. N., Tapkin, D. T.: Formal matrix rings and their isomorphisms.Sib. Math. J. 56 (2015), 955-967 translated from Sib. Mat. Zh. 56 2015 1199-1214. Zbl 1338.16032, MR 3492900, 10.1134/S0037446615060014 |
Reference:
|
[2] Abyzov, A. N., Tapkin, D. T.: On certain classes of rings of formal matrices.Russ. Math. 59 (2015), 1-12 translated from Izv. Vyssh. Uchebn. Zaved., Mat. 2015 2015 3-14. Zbl 1321.16018, MR 3374336, 10.3103/S1066369X15030019 |
Reference:
|
[3] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras.Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). Zbl 0834.16001, MR 1314422, 10.1017/CBO9780511623608 |
Reference:
|
[4] Varadarajan, A. Haghany K.: Study of formal triangular matrix rings.Commun. Algebra 27 (1999), 5507-5525. Zbl 0941.16005, MR 1713049, 10.1080/00927879908826770 |
Reference:
|
[5] Varadarajan, A. Haghany K.: Study of modules over formal triangular matrix rings.J. Pure Appl. Algebra 147 (2000), 41-58. Zbl 0951.16009, MR 1744654, 10.1016/S0022-4049(98)00129-7 |
Reference:
|
[6] Krylov, P. A.: Isomorphism of generalized matrix rings.Algebra Logic 47 (2008), 258-262 translated from Algebra Logika 47 2008 456-463. Zbl 1155.16302, MR 2484564, 10.1007/s10469-008-9016-y |
Reference:
|
[7] Krylov, P. A.: Injective modules over formal matrix rings.Sib. Math. J. 51 (2010), 72-77 translated from Sib. Mat. Zh. 51 2010 90-97. Zbl 1214.16004, MR 2654524, 10.1007/s11202-010-0009-4 |
Reference:
|
[8] Krylov, P. A., Tuganbaev, A. A.: Modules over formal matrix rings.J. Math. Sci., New York 171 (2010), 248-295 translated from Fundam. Prikl. Mat. 15 2009 145-211. Zbl 1283.16025, MR 2745016, 10.1007/s10958-010-0133-5 |
Reference:
|
[9] Krylov, P. A., Tuganbaev, A. A.: Formal matrices and their determinants.J. Math. Sci., New York 211 (2015), 341-380 translated from Fundam. Prikl. Mat. 19 2014 65-119. Zbl 1333.15004, MR 3431871, 10.1007/s10958-015-2610-3 |
Reference:
|
[10] Lam, T. Y.: Lectures on Modules and Rings.Graduate Texts in Mathematics 189. Springer, New York (1999). Zbl 0911.16001, MR 1653294, 10.1007/978-1-4612-0525-8 |
Reference:
|
[11] Morita, K.: Duality for modules and its applications to the theory of rings with minimum conditions.Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6 (1958), 83-142. Zbl 0080.25702, MR 0096700 |
Reference:
|
[12] Müller, M.: Rings of quotients of generalized matrix rings.Commun. Algebra 15 (1987), 1991-2015. Zbl 0629.16013, MR 0909950, 10.1080/00927878708823519 |
Reference:
|
[13] Nicholson, W. K., Watters, J. F.: Classes of simple modules and triangular rings.Commun. Algebra 20 (1992), 141-153. Zbl 0751.16001, MR 1145330, 10.1080/00927879208824336 |
Reference:
|
[14] Tang, G., Li, C., Zhou, Y.: Study of Morita contexts.Commun. Algebra 42 (2014), 1668-1681. Zbl 1292.16020, MR 3169661, 10.1080/00927872.2012.748327 |
Reference:
|
[15] Tang, G., Zhou, Y.: Strong cleanness of generalized matrix rings over a local ring.Linear Algebra Appl. 437 (2012), 2546-2559. Zbl 1258.16032, MR 2964706, 10.1016/j.laa.2012.06.035 |
Reference:
|
[16] Tang, G., Zhou, Y.: A class of formal matrix rings.Linear Algebra Appl. 438 (2013), 4672-4688. Zbl 1283.16026, MR 3039217, 10.1016/j.laa.2013.02.019 |
. |