Previous |  Up |  Next

Article

Title: On the binary system of factors of formal matrix rings (English)
Author: Chen, Weining
Author: Deng, Guixin
Author: Su, Huadong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 3
Year: 2020
Pages: 693-709
Summary lang: English
.
Category: math
.
Summary: We investigate the formal matrix ring over $R$ defined by a certain system of factors. We give a method for constructing formal matrix rings from non-negative integer matrices. We also show that the principal factor matrix of a binary system of factors determine the structure of the system. (English)
Keyword: formal matrix ring
Keyword: bimodule
Keyword: system of factors
Keyword: Wedderburn-Artin theorem
MSC: 15B99
MSC: 16S50
idZBL: 07250683
idMR: MR4151699
DOI: 10.21136/CMJ.2020.0464-18
.
Date available: 2020-09-07T09:35:54Z
Last updated: 2022-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148322
.
Reference: [1] Abyzov, A. N., Tapkin, D. T.: Formal matrix rings and their isomorphisms.Sib. Math. J. 56 (2015), 955-967 translated from Sib. Mat. Zh. 56 2015 1199-1214. Zbl 1338.16032, MR 3492900, 10.1134/S0037446615060014
Reference: [2] Abyzov, A. N., Tapkin, D. T.: On certain classes of rings of formal matrices.Russ. Math. 59 (2015), 1-12 translated from Izv. Vyssh. Uchebn. Zaved., Mat. 2015 2015 3-14. Zbl 1321.16018, MR 3374336, 10.3103/S1066369X15030019
Reference: [3] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras.Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). Zbl 0834.16001, MR 1314422, 10.1017/CBO9780511623608
Reference: [4] Varadarajan, A. Haghany K.: Study of formal triangular matrix rings.Commun. Algebra 27 (1999), 5507-5525. Zbl 0941.16005, MR 1713049, 10.1080/00927879908826770
Reference: [5] Varadarajan, A. Haghany K.: Study of modules over formal triangular matrix rings.J. Pure Appl. Algebra 147 (2000), 41-58. Zbl 0951.16009, MR 1744654, 10.1016/S0022-4049(98)00129-7
Reference: [6] Krylov, P. A.: Isomorphism of generalized matrix rings.Algebra Logic 47 (2008), 258-262 translated from Algebra Logika 47 2008 456-463. Zbl 1155.16302, MR 2484564, 10.1007/s10469-008-9016-y
Reference: [7] Krylov, P. A.: Injective modules over formal matrix rings.Sib. Math. J. 51 (2010), 72-77 translated from Sib. Mat. Zh. 51 2010 90-97. Zbl 1214.16004, MR 2654524, 10.1007/s11202-010-0009-4
Reference: [8] Krylov, P. A., Tuganbaev, A. A.: Modules over formal matrix rings.J. Math. Sci., New York 171 (2010), 248-295 translated from Fundam. Prikl. Mat. 15 2009 145-211. Zbl 1283.16025, MR 2745016, 10.1007/s10958-010-0133-5
Reference: [9] Krylov, P. A., Tuganbaev, A. A.: Formal matrices and their determinants.J. Math. Sci., New York 211 (2015), 341-380 translated from Fundam. Prikl. Mat. 19 2014 65-119. Zbl 1333.15004, MR 3431871, 10.1007/s10958-015-2610-3
Reference: [10] Lam, T. Y.: Lectures on Modules and Rings.Graduate Texts in Mathematics 189. Springer, New York (1999). Zbl 0911.16001, MR 1653294, 10.1007/978-1-4612-0525-8
Reference: [11] Morita, K.: Duality for modules and its applications to the theory of rings with minimum conditions.Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6 (1958), 83-142. Zbl 0080.25702, MR 0096700
Reference: [12] Müller, M.: Rings of quotients of generalized matrix rings.Commun. Algebra 15 (1987), 1991-2015. Zbl 0629.16013, MR 0909950, 10.1080/00927878708823519
Reference: [13] Nicholson, W. K., Watters, J. F.: Classes of simple modules and triangular rings.Commun. Algebra 20 (1992), 141-153. Zbl 0751.16001, MR 1145330, 10.1080/00927879208824336
Reference: [14] Tang, G., Li, C., Zhou, Y.: Study of Morita contexts.Commun. Algebra 42 (2014), 1668-1681. Zbl 1292.16020, MR 3169661, 10.1080/00927872.2012.748327
Reference: [15] Tang, G., Zhou, Y.: Strong cleanness of generalized matrix rings over a local ring.Linear Algebra Appl. 437 (2012), 2546-2559. Zbl 1258.16032, MR 2964706, 10.1016/j.laa.2012.06.035
Reference: [16] Tang, G., Zhou, Y.: A class of formal matrix rings.Linear Algebra Appl. 438 (2013), 4672-4688. Zbl 1283.16026, MR 3039217, 10.1016/j.laa.2013.02.019
.

Files

Files Size Format View
CzechMathJ_70-2020-3_5.pdf 340.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo