Title:
|
$q$-analogues of two supercongruences of Z.-W. Sun (English) |
Author:
|
Gu, Cheng-Yang |
Author:
|
Guo, Victor J. W. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
70 |
Issue:
|
3 |
Year:
|
2020 |
Pages:
|
757-765 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give several different $q$-analogues of the following two congruences of \hbox {Z.-W. Sun}: $$ \sum _{k=0}^{(p^{r}-1)/2}\frac {1}{8^k}{2k\choose k} \equiv \Bigl (\frac {2}{p^r}\Bigr )\pmod {p^2}\quad \text {and}\quad \sum _{k=0}^{(p^{r}-1)/2}\frac {1}{16^k}{2k\choose k}\equiv \Bigl (\frac {3}{p^r}\Bigr )\pmod {p^2}, $$ where $p$ is an odd prime, $r$ is a positive integer, and $(\frac mn)$ is the Jacobi symbol. The proofs of them require the use of some curious $q$-series identities, two of which are related to Franklin's involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012. (English) |
Keyword:
|
congruences |
Keyword:
|
$q$-binomial coefficient |
Keyword:
|
cyclotomic polynomial |
Keyword:
|
Franklin's involution |
MSC:
|
05A10 |
MSC:
|
05A30 |
MSC:
|
11A07 |
MSC:
|
11B65 |
idZBL:
|
07250687 |
idMR:
|
MR4151703 |
DOI:
|
10.21136/CMJ.2020.0516-18 |
. |
Date available:
|
2020-09-07T09:37:57Z |
Last updated:
|
2022-10-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148326 |
. |
Reference:
|
[1] Andrews, G. E.: The Theory of Partitions.Cambridge Mathematical Library, Cambridge University Press, Cambridge (1998). Zbl 0996.11002, MR 1634067, 10.1017/CBO9780511608650 |
Reference:
|
[2] Berkovich, A., Garvan, F. G.: Some observations on Dyson's new symmetries of partitions.J. Comb. Theory, Ser. A 100 (2002), 61-93. Zbl 1016.05003, MR 1932070, 10.1006/jcta.2002.3281 |
Reference:
|
[3] Cigler, J.: A new class of $q$-Fibonacci polynomials.Electron. J. Comb. 10 (2003), Research paper R19, 15 pages. Zbl 1027.05006, MR 1975769 |
Reference:
|
[4] Ekhad, S. B., Zeilberger, D.: The number of solutions of $X^2=0$ in triangular matrices over $GF(q)$.Electron. J. Comb. 3 (1996), Research paper R2, 2 pages. Zbl 0851.15010, MR 1364064 |
Reference:
|
[5] Guo, V. J. W.: Common $q$-analogues of some different supercongruences.Result. Math. 74 (2019), Article No. 131, 15 pages. Zbl 1414.33016, MR 3963751, 10.1007/s00025-019-1056-1 |
Reference:
|
[6] Guo, V. J. W., Liu, J.-C.: $q$-analogues of two Ramanujan-type formulas for $1/\pi$.J. Difference Equ. Appl. 24 (2018), 1368-1373. Zbl 06949015, MR 3851167, 10.1080/10236198.2018.1485669 |
Reference:
|
[7] Guo, V. J. W., Wang, S.-D.: Factors of sums and alternating sums of products of $q$-binomial coefficients and powers of $q$-integers.Taiwanese J. Math. 23 (2019), 11-27. Zbl 1405.05017, MR 3909988, 10.11650/tjm/180601 |
Reference:
|
[8] Guo, V. J. W., Zeng, J.: New congruences for sums involving Apéry numbers or central Delannoy numbers.Int. J. Number Theory 8 (2012), 2003-2016. Zbl 1268.11028, MR 2978852, 10.1142/S1793042112501138 |
Reference:
|
[9] Guo, V. J. W., Zudilin, W.: A $q$-microscope for supercongruences.Adv. Math. 346 (2019), 329-358. Zbl 07035902, MR 3910798, 10.1016/j.aim.2019.02.008 |
Reference:
|
[10] Ismail, M. E. H., Kim, D., Stanton, D.: Lattice paths and positive trigonometric sums.Constructive Approximation 15 (1999), 69-81. Zbl 0924.42004, MR 1660081, 10.1007/s003659900097 |
Reference:
|
[11] Liu, J.-C.: Some finite generalizations of Euler's pentagonal number theorem.Czech. Math. J. 67 (2017), 525-531. Zbl 06738535, MR 3661057, 10.21136/CMJ.2017.0063-16 |
Reference:
|
[12] Liu, J.-C.: Some finite generalizations of Gauss's square exponent identity.Rocky Mt. J. Math. 47 (2017), 2723-2730. Zbl 06840997, MR 3760315, 10.1216/RMJ-2017-47-8-2723 |
Reference:
|
[13] Slater, L. J.: A new proof of Rogers's transformations of infinite series.Proc. Lond. Math. Soc., II. Ser. 53 (1951), 460-475. Zbl 0044.06102, MR 0043235, 10.1112/plms/s2-53.6.460 |
Reference:
|
[14] Sun, Z.-W.: Fibonacci numbers modulo cubes of primes.Taiwanese J. Math. 17 (2013), 1523-1543. Zbl 1316.11013, MR 3106028, 10.11650/tjm.17.2013.2488 |
. |