Previous |  Up |  Next

Article

Title: Weighted estimates for commutators of multilinear Hausdorff operators on variable exponent Morrey-Herz type spaces (English)
Author: Duong, Dao Van
Author: Dung, Kieu Huu
Author: Chuong, Nguyen Minh
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 3
Year: 2020
Pages: 833-865
Summary lang: English
.
Category: math
.
Summary: We establish the boundedness for the commutators of multilinear Hausdorff operators on the product of some weighted Morrey-Herz type spaces with variable exponent with their symbols belonging to both Lipschitz space and central BMO space. By these, we generalize and strengthen some previously known results. (English)
Keyword: multilinear Hausdorff operator
Keyword: Hardy-Cesàro operator
Keyword: commutator
Keyword: Lipschitz space
Keyword: central BMO space
Keyword: Morrey-Herz space
Keyword: $A_p$ weight
Keyword: variable exponent
MSC: 42B30
MSC: 42B35
MSC: 47B38
idZBL: 07250693
idMR: MR4151709
DOI: 10.21136/CMJ.2020.0566-18
.
Date available: 2020-09-07T09:40:59Z
Last updated: 2022-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148332
.
Reference: [1] Almeida, A., Drihem, D.: Maximal, potential and singular type operators on Herz spaces with variable exponents.J. Math. Anal. Appl. 394 (2012), 781-795. Zbl 1250.42077, MR 2927498, 10.1016/j.jmaa.2012.04.043
Reference: [2] Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability.J. Funct. Anal. 258 (2010), 1628-1655. Zbl 1194.46045, MR 2566313, 10.1016/j.jfa.2009.09.012
Reference: [3] Bandaliev, R. A.: The boundedness of multidimensional Hardy operators in weighted variable Lebesgue spaces.Lith. Math. J. 50 (2010), 249-259. Zbl 1219.46026, MR 2719561, 10.1007/s10986-010-9083-3
Reference: [4] Brown, G., Móricz, F.: Multivariate Hausdorff operators on the spaces $L^p(\mathbb R^n)$.J. Math. Anal. Appl. 271 (2002), 443-454. Zbl 1027.47024, MR 1923645, 10.1016/S0022-247X(02)00128-2
Reference: [5] Chanillo, S.: A note on commutators.Indiana Univ. Math. J. 31 (1982), 7-16. Zbl 0523.42015, MR 0642611, 10.1512/iumj.1982.31.31002
Reference: [6] Chuong, N. M.: Pseudodifferential Operators and Wavelets over Real and $p$-adic Fields.Springer, Cham (2018). Zbl 06863917, MR 3839303, 10.1007/978-3-319-77473-2
Reference: [7] Chuong, N. M., Duong, D. V., Dung, K. H.: Multilinear Hausdorff operators on some function spaces with variable exponent.Available at https://arxiv.org/abs/1709.08185 (2017), 36 pages.
Reference: [8] Chuong, N. M., Duong, D. V., Hung, H. D.: Bounds for the weighted Hardy-Cesàro operator and its commutator on weighted Morrey-Herz type spaces.Z. Anal. Anwend. 35 (2016), 489-504. Zbl 06655842, MR 3556758, 10.4171/ZAA/1575
Reference: [9] Chuong, N. M., Hong, N. T., Hung, H. D.: Multilinear Hardy-Cesàro operator and commutator on the product of Morrey-Herz spaces.Anal. Math. 43 (2017), 547-565. Zbl 1399.47125, MR 3738360, 10.1007/s10476-017-0502-0
Reference: [10] Coifman, R. R., Meyer, Y.: On commutators of singular integrals and bilinear singular integrals.Trans. Am. Math. Soc. 212 (1975), 315-331. Zbl 0324.44005, MR 0380244, 10.1090/S0002-9947-1975-0380244-8
Reference: [11] Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables.Ann. Math. 103 (1976), 611-635. Zbl 0326.32011, MR 0412721, 10.2307/1970954
Reference: [12] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis.Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, New York (2013). Zbl 1268.46002, MR 3026953, 10.1007/978-3-0348-0548-3
Reference: [13] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017, Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8
Reference: [14] Diening, L., Růžička, M: Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics.J. Reine Angew. Math. 563 (2003), 197-220. Zbl 1072.76071, MR 2009242, 10.1515/crll.2003.081
Reference: [15] Fefferman, C.: Characterizations of bounded mean oscillation.Bull. Am. Math. Soc. 77 (1971), 587-588. Zbl 0229.46051, MR 0280994, 10.1090/S0002-9904-1971-12763-5
Reference: [16] Fu, Z. W., Gong, S. L., Lu, S. Z., Yuan, W.: Weighted multilinear Hardy operators and commutators.Forum Math. 27 (2015), 2825-2851. Zbl 1331.42016, MR 3393380, 10.1515/forum-2013-0064
Reference: [17] Fu, Z. W., Liu, Z. G., Lu, S. Z.: Commutators of weighted Hardy operators on $\mathbb R^n$.Proc. Am. Math. Soc. 137 (2009), 3319-3328. Zbl 1174.42018, MR 2515401, 10.1090/S0002-9939-09-09824-4
Reference: [18] Grafakos, L.: Modern Fourier Analysis.Graduate Texts in Mathematics 250, Springer, New York (2009). Zbl 1158.42001, MR 2463316, 10.1007/978-0-387-09434-2
Reference: [19] Guliyev, V. S., Hasanov, J. J., Samko, S. G.: Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces.Math. Scand. 107 (2010), 285-304. Zbl 1213.42077, MR 2735097, 10.7146/math.scand.a-15156
Reference: [20] Hung, H. D., Ky, L. D.: New weighted multilinear operators and commutators of Hardy-Cesàro type.Acta Math. Sci., Ser. B, Engl. Ed. 35 (2015), 1411-1425. Zbl 1349.42050, MR 3413504, 10.1016/S0252-9602(15)30063-1
Reference: [21] Hytönen, T., Pérez, C., Rela, E.: Sharp reverse Hölder property for $A_{\infty}$ weights on spaces of homogeneous type.J. Funct. Anal. 263 (2012), 3883-3899. Zbl 1266.42045, MR 2990061, 10.1016/j.jfa.2012.09.013
Reference: [22] Indratno, S., Maldonado, D., Silwal, S.: A visual formalism for weights satisfying reverse inequalities.Expo. Math. 33 (2015), 1-29. Zbl 1344.42021, MR 3310925, 10.1016/j.exmath.2013.12.008
Reference: [23] Izuki, M.: Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent.Rend. Circ. Mat. Palermo (2) 59 (2010), 461-472. Zbl 1206.42011, MR 2745523, 10.1007/s12215-010-0034-y
Reference: [24] John, F., Nirenberg, L.: On functions of bounded mean oscillation.Commun. Pure Appl. Math. 14 (1961), 415-426. Zbl 0102.04302, MR 0131498, 10.1002/cpa.3160140317
Reference: [25] Karlovich, A. Y., Lerner, A. K.: Commutators of singular integrals on generalized $L^p$ spaces with variable exponent.Publ. Mat., Barc. 49 (2005), 111-125. Zbl 1129.42359, MR 2140202, 10.5565/PUBLMAT_49105_05
Reference: [26] Lu, Y., Zhu, Y. P.: Boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz spaces with variable exponents.Acta Math. Sin., Engl. Ser. 30 (2014), 1180-1194. Zbl 1304.42042, MR 3226766, 10.1007/s10114-014-3410-2
Reference: [27] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function.Trans. Am. Math. Soc. 165 (1972), 207-226. Zbl 0236.26016, MR 0293384, 10.1090/S0002-9947-1972-0293384-6
Reference: [28] Stein, E. M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals.Princeton Mathematical Series 43, Princeton University Press, Princeton (1993). Zbl 0821.42001, MR 1232192, 10.1515/9781400883929
Reference: [29] Tang, C., Xue, F., Zhou, Y.: Commutators of weighted Hardy operators on Herz-type spaces.Ann. Polon. Math. 101 (2011), 267-273. Zbl 1230.42023, MR 2799588, 10.4064/ap101-3-6
Reference: [30] Wu, J.: Boundedness for commutators of fractional integrals on Herz-Morrey spaces with variable exponent.Kyoto J. Math. 54 (2014), 483-495. Zbl 1310.42009, MR 3263547, 10.1215/21562261-2693397
Reference: [31] Wu, J.-L., Zhao, W.-J.: Boundedness for fractional Hardy-type operator on variable-exponent Herz-Morrey spaces.Kyoto J. Math. 56 (2016), 831-845. Zbl 1354.42025, MR 3568643, 10.1215/21562261-3664932
Reference: [32] Xiao, J.: $L^p$ and BMO bounds of weighted Hardy-Littlewood averages.J. Math. Anal. Appl. 262 (2001), 660-666. Zbl 1009.42013, MR 1859331, 10.1006/jmaa.2001.7594
.

Files

Files Size Format View
CzechMathJ_70-2020-3_15.pdf 455.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo