Previous |  Up |  Next

Article

Title: Complex symmetric weighted composition operators on the Hardy space (English)
Author: Jiang, Cao
Author: Han, Shi-An
Author: Zhou, Ze-Hua
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 3
Year: 2020
Pages: 817-831
Summary lang: English
.
Category: math
.
Summary: This paper identifies a class of complex symmetric weighted composition operators on $H^2(\mathbb {D})$ that includes both the unitary and the Hermitian weighted composition operators, as well as a class of normal weighted composition operators identified by Bourdon and Narayan. A characterization of algebraic weighted composition operators with degree no more than two is provided to illustrate that the weight function of a complex symmetric weighted composition operator is not necessarily linear fractional. (English)
Keyword: complex symmetry
Keyword: weighted composition operator
Keyword: Hardy space
MSC: 47B33
MSC: 47B38
idZBL: 07250692
idMR: MR4151708
DOI: 10.21136/CMJ.2020.0555-18
.
Date available: 2020-09-07T09:40:29Z
Last updated: 2022-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148331
.
Reference: [1] Bourdon, P. S., Narayan, S. K.: Normal weighted composition operators on the Hardy space $H^2(\mathbb{U})$.J. Math. Anal. Appl. 367 (2010), 278-286. Zbl 1195.47013, MR 2600397, 10.1016/j.jmaa.2010.01.006
Reference: [2] Bourdon, P. S., Noor, S. Waleed: Complex symmetry of invertible composition operators.J. Math. Anal. Appl. 429 (2015), 105-110. Zbl 1331.47039, MR 3339066, 10.1016/j.jmaa.2015.04.008
Reference: [3] Cowen, C. C., Ko, E.: Hermitian weighted composition operators on $H^2$.Trans. Am. Math. Soc. 362 (2010), 5771-5801. Zbl 1213.47034, MR 2661496, 10.1090/S0002-9947-2010-05043-3
Reference: [4] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions.Studies in Advanced Mathematics, CRC Press, Boca Raton (1995). Zbl 0873.47017, MR 1397026, 10.1201/9781315139920
Reference: [5] Gao, Y. X., Zhou, Z. H.: Complex symmetric composition operators induced by linear fractional maps.Indiana Univ. Math. J. 69 (2020), 367-384. MR 4084175, 10.1512/iumj.2020.69.7622
Reference: [6] Garcia, S. R., Hammond, C.: Which weighted composition operators are complex symmetric?.Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation Operator Theory: Advances and Applications 236, Birkhäuser/Springer, Basel (2014), 171-179. Zbl 1343.47034, MR 3203059, 10.1007/978-3-0348-0648-0_10
Reference: [7] Garcia, S. R., Putinar, M.: Complex symmetric operators and applications.Trans. Am. Math. Soc. 358 (2006), 1285-1315. Zbl 1087.30031, MR 2187654, 10.1090/S0002-9947-05-03742-6
Reference: [8] Garcia, S. R., Putinar, M.: Complex symmetric operators and applications II.Trans. Am. Math. Soc. 359 (2007), 3913-3931. Zbl 1123.47030, MR 2302518, 10.1090/S0002-9947-07-04213-4
Reference: [9] Garcia, S. R., Wogen, W. R.: Complex symmetric partial isometries.J. Funct. Anal. 257 (2009), 1251-1260. Zbl 1166.47023, MR 2535469, 10.1016/j.jfa.2009.04.005
Reference: [10] Garcia, S. R., Wogen, W. R.: Some new classes of complex symmetric operators.Trans. Am. Math. Soc. 362 (2010), 6065-6077. Zbl 1208.47036, MR 2661508, 10.1090/S0002-9947-2010-05068-8
Reference: [11] Jung, S., Kim, Y., Ko, E., Lee, J.: Complex symmetric weighted composition operators on $H^2(\mathbb{D})$.J. Funct. Anal. 267 (2014), 323-351. Zbl 1292.47014, MR 3210031, 10.1016/j.jfa.2014.04.004
Reference: [12] Matache, V.: Problems on weighted and unweighted composition operators.Complex Analysis and Dynamical Systems Trends in Mathematics, Birkhäuser, Cham (2018), 191-217. Zbl 07004622, MR 3784172, 10.1007/978-3-319-70154-7_11
Reference: [13] Narayan, S. K., Sievewright, D., Thompson, D.: Complex symmetric composition operators on $H^2$.J. Math. Anal. Appl. 443 (2016), 625-630. Zbl 1341.47030, MR 3508506, 10.1016/j.jmaa.2016.05.046
Reference: [14] Shapiro, J. H.: Composition Operators and Classical Function Theory.Universitext: Tracts in Mathematics, Springer, New York (1993). Zbl 0791.30033, MR 1237406, 10.1007/978-1-4612-0887-7
Reference: [15] Noor, S. Waleed: Complex symmetry of composition operators induced by involutive ball automorphisms.Proc. Am. Math. Soc. 142 (2014), 3103-3107. Zbl 1302.47039, MR 3223366, 10.1090/S0002-9939-2014-12029-6
Reference: [16] Noor, S. Waleed: On an example of a complex symmetric composition operator on $H^2(\mathbb{D})$.J. Funct. Anal. 269 (2015), 1899-1901. Zbl 06473179, MR 3373436, 10.1016/j.jfa.2015.06.019
.

Files

Files Size Format View
CzechMathJ_70-2020-3_14.pdf 310.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo