Previous |  Up |  Next

Article

Title: Boundary exact controllability for a porous elastic Timoshenko system (English)
Author: Santos, Manoel J.
Author: Raposo, Carlos A.
Author: Rodrigues, Leonardo R. S.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 4
Year: 2020
Pages: 343-354
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider a one-dimensional system governed by two partial differential equations. Such a system models phenomena in engineering, such as vibrations in beams or deformation of elastic bodies with porosity. By using the HUM method, we prove that the system is boundary exactly controllable in the usual energy space. We will also determine the minimum time allowed by the method for the controllability to occur. (English)
Keyword: boundary exact controllability
Keyword: Timoshenko beam
Keyword: porous elasticity
MSC: 93B05
MSC: 93C20
idZBL: 07250666
idMR: MR4134138
DOI: 10.21136/AM.2020.0133-19
.
Date available: 2020-09-07T09:43:57Z
Last updated: 2022-09-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148336
.
Reference: [1] Akil, M., Chitour, Y., Ghader, M., Wehbe, A.: Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary.(to appear) in Asymptotic Anal. 10.3233/ASY-191574
Reference: [2] Júnior, D. S. Almeida, Ramos, A. J. A., Santos, M. L.: Observability inequality for the \hbox{finite}-difference semi-discretization of the 1-d coupled wave equations.Adv. Comput. Math. 41 (2015), 105-130. Zbl 1314.65119, MR 3311475, 10.1007/s10444-014-9351-6
Reference: [3] Júnior, D. S. Almeida, Santos, M. L., Rivera, J. E. Muñoz: Stability to weakly dissipative Timoshenko systems.Math. Methods Appl. Sci. 36 (2013), 1965-1976. Zbl 1273.74072, MR 3091687, 10.1002/mma.2741
Reference: [4] Aouadi, M., Campo, M., Copetti, M. I. M., Fernández, J. R.: Existence, stability and numerical results for a Timoshenko beam with thermodiffusion effects.Z. Angew. Math. Phys. 70 (2019), Article ID 117, 26 pages. Zbl 1418.74018, MR 3982962, 10.1007/s00033-019-1161-8
Reference: [5] Araruna, F. D., Zuazua, E.: Controllability of the Kirchhoff system for beams as a limit of the Mindlin-Timoshenko system.SIAM J. Control Optim. 47 (2008), 1909-1938. Zbl 1170.74351, MR 2421335, 10.1137/060659934
Reference: [6] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Nascimento, F. A. Falcão, Lasiecka, I., Rodrigues, J. H.: Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping.Z. Angew. Math. Phys. 65 (2014), 1189-1206. Zbl 1316.35034, MR 3279525, 10.1007/s00033-013-0380-7
Reference: [7] Cowin, S. C., Nunziato, J. W.: Linear elastic materials with voids.J. Elasticity 13 (1983), 125-147. Zbl 0523.73008, 10.1007/BF00041230
Reference: [8] Dell'Oro, F., Pata, V.: On the stability of Timoshenko systems with Gurtin-Pipkin thermal law.J. Differ. Equations 257 (2014), 523-548. Zbl 1288.35074, MR 3200380, 10.1016/j.jde.2014.04.009
Reference: [9] Dridi, H., Djebabla, A.: On the stabilization of linear porous elastic materials by microtemperature effect and porous damping.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66 (2020), 13-25. Zbl 07194183, MR 4091442, 10.1007/s11565-019-00333-2
Reference: [10] Infante, J. A., Zuazua, E.: Boundary observability for the space semi-discretizations of the 1-d wave equation.M2AN, Math. Model. Numer. Anal. 33 (1999), 407-438. Zbl 0947.65101, MR 1700042, 10.1051/m2an:1999123
Reference: [11] Lagnese, J. E., Leugering, G., Schmidt, E. J. P. G.: Control of planar networks of Timoshenko beams.SIAM J. Control Optim. 31 (1993), 780-811. Zbl 0775.93107, MR 1214764, 10.1137/0331035
Reference: [12] Lagnese, J. E., Lions, J.-L.: Modelling Analysis and Control of Thin Plates.Recherches en Mathématiques Appliquées 6. Masson, Paris (1988). Zbl 0662.73039, MR 0953313
Reference: [13] Lions, J.-L.: Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 2. Perturbations.Recherches en Mathématiques Appliquées 9. Masson, Paris (1988), French. Zbl 0653.93003, MR 0963060
Reference: [14] Lions, J.-L.: Exact controllability, stabilization and perturbations for distributed systems.SIAM Rev. 30 (1988), 1-68. Zbl 0644.49028, MR 0931277, 10.1137/1030001
Reference: [15] Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Volume III.Die Grundlehren der mathematischen Wissenschaften 183. Springer, Berlin (1973). Zbl 0251.35001, MR 0350179, 10.1007/978-3-642-65393-3
Reference: [16] Magaña, A., Quintanilla, R.: On the time decay of solutions in one-dimensional theories of porous materials.Int. J. Solids Struct. 43 (2006), 3414-3427. Zbl 1121.74361, MR 2221521, 10.1016/j.ijsolstr.2005.06.077
Reference: [17] Medeiros, L. A.: Exact controllability for a Timoshenko model of vibrations of beams.Adv. Math. Sci. Appl. 2 (1993), 47-61. Zbl 0860.93014, MR 1239248
Reference: [18] Medeiros, L. A., Miranda, M. M., Lourêdo, A. T.: Introduction Exact Control Theory: Method HUM.EDUEPB, Campina Grande (2013).
Reference: [19] Mercier, D., Régnier, V.: Decay rate of the Timoshenko system with one boundary damping.Evol. Equ. Control Theory 8 (2019), 423. Zbl 1428.35578, MR 3959450, 10.3934/eect.2019021
Reference: [20] Rivera, J. E. Muñoz, Quintanilla, R.: On the polynomial decay in elastic solids with voids.J. Math. Anal. Appl. 338 (2008), 1296-1309. Zbl 1131.74019, MR 2386497, 10.1016/j.jmaa.2007.06.005
Reference: [21] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Applied Mathematical Sciences 44. Springer, New York (1983). Zbl 0516.47023, MR 0710486, 10.1007/978-1-4612-5561-1
Reference: [22] Ramos, A. J. A., Júnior, D. S. Almeida, Freitas, M. M., Santos, M. J. dos, Santos, A. R.: Exponential stabilization for porous elastic system with one boundary dissipation.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66 (2020), 113-134. Zbl 07194190, MR 4091443, 10.1007/s11565-019-00334-1
Reference: [23] Raposo, C. A., Apalara, T. A., Ribeiro, J. O.: Analyticity to transmission problem with delay in porous-elasticity.J. Math. Anal. Appl. 466 (2018), 819-834. Zbl 1394.35265, MR 3818147, 10.1016/j.jmaa.2018.06.017
Reference: [24] Raposo, C. A., Bastos, W. D., Santos, M. L.: A transmission problem for the Timoshenko system.Comput. Appl. Math. 26 (2007), 215-234. Zbl 1182.35216, MR 2337709, 10.1590/s0101-82052007000200003
Reference: [25] Said-Houari, B., Laskri, Y.: A stability result of a Timoshenko system with a delay term in the internal feedback.Appl. Math. Comput. 217 (2010), 2857-2869. Zbl 1342.74086, MR 2733729, 10.1016/j.amc.2010.08.021
Reference: [26] Santos, M. L., Júnior, D. S. Almeida: On porous-elastic system with localized damping.Z. Angew. Math. Phys. 67 (2016), Article ID 63, 18 pages. Zbl 1351.35217, MR 3494484, 10.1007/s00033-016-0622-6
Reference: [27] Shubov, M. A.: Exact controllability of damped Timoshenko beam.IMA J. Math. Control Inf. 17 (2000), 375-395. Zbl 0991.93016, MR 1797350, 10.1093/imamci/17.4.375
Reference: [28] Soufyane, A.: Stabilisation de la poutre de Timoshenko.C. R. Acad. Sci., Paris, Sér. I, Math. 328 (1999), 731-734 French. Zbl 0943.74042, MR 1680836, 10.1016/S0764-4442(99)80244-4
Reference: [29] Timoshenko, S. P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars.Lond. Edinb. Dubl. Phil. Mag., Ser. VI. 41 (1921), 744-746. 10.1080/14786442108636264
Reference: [30] Zhang, C., Hu, X.: Exact controllability of a Timoshenko beam with dynamical boundary.J. Math. Kyoto Univ. 47 (2007), 643-655. Zbl 1141.74036, MR 2402520, 10.1215/kjm/1250281029
Reference: [31] Zuazua, E.: Exact controllability for the semilinear wave equation.J. Math. Pures Appl., IX. Sér. 69 (1990), 1-31. Zbl 38.49017, MR 1054122
Reference: [32] Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference methods.SIAM Rev. 47 (2005), 197-243. Zbl 1077.65095, MR 2179896, 10.1137/S0036144503432862
.

Files

Files Size Format View
AplMat_65-2020-4_1.pdf 290.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo