Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
exponential stability; dissipative system; flexible structure; functional analysis
Summary:
In this paper we study the asymptotic behavior of a system composed of an integro-partial differential equation that models the longitudinal oscillation of a beam with a memory effect to which a thermal effect has been given by the Green-Naghdi model type III, being physically more accurate than the Fourier and Cattaneo models. To achieve this goal, we will use arguments from spectral theory, considering a suitable hypothesis of smoothness on the integro-partial differential equation.
References:
[1] Alves, M. S., Gamboa, P., Gorain, G. C., Rambaud, A., Vera, O.: Asymptotic behavior of a flexible structure with Cattaneo type of thermal effect. Indag. Math., New Ser. 27 (2016), 821-834. DOI 10.1016/j.indag.2016.03.001 | MR 3505996 | Zbl 1359.80003
[2] Alves, M., Rivera, J. Muñoz, Sepúlveda, M., Villagrán, O. Vera, Garay, M. Zegarra: The asymptotic behavior of the linear transmission problem in viscoelasticity. Math. Nachr. 287 (2014), 483-497. DOI 10.1002/mana.201200319 | MR 3193931 | Zbl 1291.35386
[3] Aouadi, M.: On uniform decay of a nonsimple thermoelastic bar with memory. J. Math. Anal. Appl. 402 (2013), 745-757. DOI 10.1016/j.jmaa.2013.01.059 | MR 3029188 | Zbl 1307.74024
[4] Cattaneo, C.: Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ., Modena 3 (1948), 83-101 Italian. MR 0032898 | Zbl 0035.26203
[5] Christov, C. I.: On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36 (2009), 481-486. DOI 10.1016/j.mechrescom.2008.11.003 | MR 2510197 | Zbl 1258.80001
[6] Coleman, B. D., Gurtin, M. E.: Equipresence and constitutive equations for rigid heat conductors. Z. Angew. Math. Phys. 18 (1967), 199-208. DOI 10.1007/BF01596912 | MR 0214334
[7] Dafermos, C. M.: Asymptotic stability in viscoelasticity. Arch. Rational. Mech. Anal. 37 (1970), 297-308. DOI 10.1007/BF00251609 | MR 0281400 | Zbl 0214.24503
[8] Fatori, L. H., Rivera, J. E. Munõz, Monteiro, R. Nunes: Energy decay to Timoshenko's system with thermoelasticity of type III. Asymptotic Anal. 86 (2014), 227-247. DOI 10.3233/ASY-131196 | MR 3181823 | Zbl 1294.80003
[9] Feng, B., Li, H.: General decay of solutions to a one-dimensional thermoelastic beam with variable coefficients. Bound. Value Probl. 2017 (2017), Article ID 158, 13 pages. DOI 10.1186/s13661-017-0891-9 | MR 3719703 | Zbl 1378.35034
[10] Sare, H. D. Fernández, Racke, R.: On the stability of damped Timoshenko systems: Cattaneo versus Fourier law. Arch. Ration. Mech. Anal. 194 (2009), 221-251. DOI 10.1007/s00205-009-0220-2 | MR 2533927 | Zbl 1251.74011
[11] Gearhart, L.: Spectral theory for contraction semigroups on Hilbert spaces. Trans. Am. Math. Soc. 236 (1978), 385-394. DOI 10.1090/S0002-9947-1978-0461206-1 | MR 0461206 | Zbl 0326.47038
[12] Giorgi, C., Grandi, D., Pata, V.: On the Green-Naghdi type III heat conduction model. Discrete Contin. Dyn. Syst., Ser. B 19 (2014), 2133-2143. DOI 10.3934/dcdsb.2014.19.2133 | MR 3253249 | Zbl 1302.80004
[13] Gorain, G. C.: Exponential stabilization of longitudinal vibrations of an inhomogeneous beam. J. Math. Sci., New York 198 (2014), 245-251 translated from Nelini\vıni Kolyvannya 16 2013 157-164. DOI 10.1007/s10958-014-1787-1 | MR 3374913 | Zbl 1301.35178
[14] Green, A. E., Naghdi, P. M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond., Ser. A 432 (1991), (171-194). DOI 10.1098/rspa.1991.0012 | MR 1116956 | Zbl 0726.73004
[15] Gurtin, M. E., Pipkin, A. C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31 (1968), 113-126. DOI 10.1007/BF00281373 | MR 1553521 | Zbl 0164.12901
[16] Liu, K., Liu, Z.: On the type of $C_{0}$-semigroup associated with the abstract linear viscoelastic system. Z. Angew. Math. Phys. 47 (1996), 1-15. DOI 10.1007/BF00917570 | MR 1408667 | Zbl 0841.73026
[17] Liu, K., Liu, Z.: Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping. SIAM J. Control Optimization 36 (1998), 1086-1098. DOI 10.1137/S0363012996310703 | MR 1613917 | Zbl 0909.35018
[18] Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman & Hall/CRC Research Notes in Mathematics 398. Chapman and Hall/CRC, Boca Raton (1999). MR 1681343 | Zbl 0924.73003
[19] Magaña, A., Quintanilla, R.: Exponential decay in nonsimple thermoelasticity of type III. Math. Methods Appl. Sci. 39 (2016), 225-235. DOI 10.1002/mma.3472 | MR 3453707 | Zbl 1336.35062
[20] Pamplona, P. X., Rivera, J. E. Muñoz, Quintanilla, R.: On the decay of solutions for porous-elastic systems with history. J. Math. Anal. Appl. 379 (2011), 682-705. DOI 10.1016/j.jmaa.2011.01.045 | MR 2784351 | Zbl 1259.35136
[21] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44. Springer, New York (1983). DOI 10.1007/978-1-4612-5561-1 | MR 0710486 | Zbl 0516.47023
[22] Santos, M. L., Almeida, D. S.: On Timoshenko-type systems with type III thermoelasticity: Asymptotic behavior. J. Math. Anal. Appl. 448 (2017), 650-671. DOI 10.1016/j.jmaa.2016.10.074 | MR 3579904 | Zbl 1388.35191
[23] Straughan, B.: Heat Waves. Applied Mathematical Sciences 177. Springer, New York (2011). DOI 10.1007/978-1-4614-0493-4 | MR 2663899 | Zbl 1232.80001
Partner of
EuDML logo