Previous |  Up |  Next

Article

Title: Exponential stability of a flexible structure with history and thermal effect (English)
Author: Díaz, Roberto
Author: Muñoz, Jaime
Author: Martínez, Carlos
Author: Vera, Octavio
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 4
Year: 2020
Pages: 407-420
Summary lang: English
.
Category: math
.
Summary: In this paper we study the asymptotic behavior of a system composed of an integro-partial differential equation that models the longitudinal oscillation of a beam with a memory effect to which a thermal effect has been given by the Green-Naghdi model type III, being physically more accurate than the Fourier and Cattaneo models. To achieve this goal, we will use arguments from spectral theory, considering a suitable hypothesis of smoothness on the integro-partial differential equation. (English)
Keyword: exponential stability
Keyword: dissipative system
Keyword: flexible structure
Keyword: functional analysis
MSC: 35B40
MSC: 45N05
MSC: 74K10
idZBL: 07250669
idMR: MR4134141
DOI: 10.21136/AM.2020.0117-19
.
Date available: 2020-09-07T09:45:43Z
Last updated: 2022-09-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148340
.
Reference: [1] Alves, M. S., Gamboa, P., Gorain, G. C., Rambaud, A., Vera, O.: Asymptotic behavior of a flexible structure with Cattaneo type of thermal effect.Indag. Math., New Ser. 27 (2016), 821-834. Zbl 1359.80003, MR 3505996, 10.1016/j.indag.2016.03.001
Reference: [2] Alves, M., Rivera, J. Muñoz, Sepúlveda, M., Villagrán, O. Vera, Garay, M. Zegarra: The asymptotic behavior of the linear transmission problem in viscoelasticity.Math. Nachr. 287 (2014), 483-497. Zbl 1291.35386, MR 3193931, 10.1002/mana.201200319
Reference: [3] Aouadi, M.: On uniform decay of a nonsimple thermoelastic bar with memory.J. Math. Anal. Appl. 402 (2013), 745-757. Zbl 1307.74024, MR 3029188, 10.1016/j.jmaa.2013.01.059
Reference: [4] Cattaneo, C.: Sulla conduzione del calore.Atti Semin. Mat. Fis. Univ., Modena 3 (1948), 83-101 Italian. Zbl 0035.26203, MR 0032898
Reference: [5] Christov, C. I.: On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction.Mech. Res. Commun. 36 (2009), 481-486. Zbl 1258.80001, MR 2510197, 10.1016/j.mechrescom.2008.11.003
Reference: [6] Coleman, B. D., Gurtin, M. E.: Equipresence and constitutive equations for rigid heat conductors.Z. Angew. Math. Phys. 18 (1967), 199-208. MR 0214334, 10.1007/BF01596912
Reference: [7] Dafermos, C. M.: Asymptotic stability in viscoelasticity.Arch. Rational. Mech. Anal. 37 (1970), 297-308. Zbl 0214.24503, MR 0281400, 10.1007/BF00251609
Reference: [8] Fatori, L. H., Rivera, J. E. Munõz, Monteiro, R. Nunes: Energy decay to Timoshenko's system with thermoelasticity of type III.Asymptotic Anal. 86 (2014), 227-247. Zbl 1294.80003, MR 3181823, 10.3233/ASY-131196
Reference: [9] Feng, B., Li, H.: General decay of solutions to a one-dimensional thermoelastic beam with variable coefficients.Bound. Value Probl. 2017 (2017), Article ID 158, 13 pages. Zbl 1378.35034, MR 3719703, 10.1186/s13661-017-0891-9
Reference: [10] Sare, H. D. Fernández, Racke, R.: On the stability of damped Timoshenko systems: Cattaneo versus Fourier law.Arch. Ration. Mech. Anal. 194 (2009), 221-251. Zbl 1251.74011, MR 2533927, 10.1007/s00205-009-0220-2
Reference: [11] Gearhart, L.: Spectral theory for contraction semigroups on Hilbert spaces.Trans. Am. Math. Soc. 236 (1978), 385-394. Zbl 0326.47038, MR 0461206, 10.1090/S0002-9947-1978-0461206-1
Reference: [12] Giorgi, C., Grandi, D., Pata, V.: On the Green-Naghdi type III heat conduction model.Discrete Contin. Dyn. Syst., Ser. B 19 (2014), 2133-2143. Zbl 1302.80004, MR 3253249, 10.3934/dcdsb.2014.19.2133
Reference: [13] Gorain, G. C.: Exponential stabilization of longitudinal vibrations of an inhomogeneous beam.J. Math. Sci., New York 198 (2014), 245-251 translated from Nelini\vıni Kolyvannya 16 2013 157-164. Zbl 1301.35178, MR 3374913, 10.1007/s10958-014-1787-1
Reference: [14] Green, A. E., Naghdi, P. M.: A re-examination of the basic postulates of thermomechanics.Proc. R. Soc. Lond., Ser. A 432 (1991), (171-194). Zbl 0726.73004, MR 1116956, 10.1098/rspa.1991.0012
Reference: [15] Gurtin, M. E., Pipkin, A. C.: A general theory of heat conduction with finite wave speeds.Arch. Ration. Mech. Anal. 31 (1968), 113-126. Zbl 0164.12901, MR 1553521, 10.1007/BF00281373
Reference: [16] Liu, K., Liu, Z.: On the type of $C_{0}$-semigroup associated with the abstract linear viscoelastic system.Z. Angew. Math. Phys. 47 (1996), 1-15. Zbl 0841.73026, MR 1408667, 10.1007/BF00917570
Reference: [17] Liu, K., Liu, Z.: Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping.SIAM J. Control Optimization 36 (1998), 1086-1098. Zbl 0909.35018, MR 1613917, 10.1137/S0363012996310703
Reference: [18] Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems.Chapman & Hall/CRC Research Notes in Mathematics 398. Chapman and Hall/CRC, Boca Raton (1999). Zbl 0924.73003, MR 1681343
Reference: [19] Magaña, A., Quintanilla, R.: Exponential decay in nonsimple thermoelasticity of type III.Math. Methods Appl. Sci. 39 (2016), 225-235. Zbl 1336.35062, MR 3453707, 10.1002/mma.3472
Reference: [20] Pamplona, P. X., Rivera, J. E. Muñoz, Quintanilla, R.: On the decay of solutions for porous-elastic systems with history.J. Math. Anal. Appl. 379 (2011), 682-705. Zbl 1259.35136, MR 2784351, 10.1016/j.jmaa.2011.01.045
Reference: [21] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Applied Mathematical Sciences 44. Springer, New York (1983). Zbl 0516.47023, MR 0710486, 10.1007/978-1-4612-5561-1
Reference: [22] Santos, M. L., Almeida, D. S.: On Timoshenko-type systems with type III thermoelasticity: Asymptotic behavior.J. Math. Anal. Appl. 448 (2017), 650-671. Zbl 1388.35191, MR 3579904, 10.1016/j.jmaa.2016.10.074
Reference: [23] Straughan, B.: Heat Waves.Applied Mathematical Sciences 177. Springer, New York (2011). Zbl 1232.80001, MR 2663899, 10.1007/978-1-4614-0493-4
.

Files

Files Size Format View
AplMat_65-2020-4_4.pdf 299.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo